
Journal of Volcanology and Geothermal Research 366 (2018) 1–12

Contents lists available at ScienceDirect

Journal of Volcanology and Geothermal Research

j ourna l homepage: www.e lsev ie r .com/ locate / jvo lgeores
Large-magnitude Pauzhetka caldera-forming eruption in Kamchatka:
Astrochronologic age, composition and tephra dispersal
Vera Ponomareva a,⁎, Natalia Bubenshchikova b, Maxim Portnyagin c,d, Egor Zelenin e, Alexander Derkachev f,
Sergey Gorbarenko f, Dieter Garbe-Schönberg g, Ilya Bindeman h

a Institute of Volcanology and Seismology, Piip Boulevard 9, Petropavlovsk-Kamchatsky 683006, Russia
b Shirshov Institute of Oceanology, 36, Nakhimovsky Prospect, Moscow 117997, Russia
c GEOMAR Helmholtz Center for Ocean Research Kiel, Wischhofstrasse 1-3, 24148 Kiel, Germany
d V.I. Vernadsky Institute of Geochemistry and Analytical Chemistry, Kosygin St. 19, Moscow 119991, Russia
e Geological Institute, Pyzhevsky lane 7, Moscow 119017, Russia
f V.I.Il'ichev Pacific Oceanological Institute, Baltiyskaya st., 43, Vladivostok 690041, Russia
g Institut für Geowissenschaften, Christian-Albrechts-Universitaet zu Kiel, Ludewig-Meyn-Strasse 10, 24118 Kiel, Germany
h Department of Earth Sciences, 1272, University of Oregon, Eugene, OR 97403, USA
⁎ Corresponding author.
E-mail addresses: vera.ponomareva1@gmail.com (V. P

bubenshchikova.nv@ocean.ru (N. Bubenshchikova), mpor
(M. Portnyagin), derkachev@poi.dvo.ru (A. Derkachev), g
(S. Gorbarenko), dieter.garbe-schoenberg@ifg.uni-kiel.de
bindeman@uoregon.edu (I. Bindeman).

https://doi.org/10.1016/j.jvolgeores.2018.10.006
0377-0273/© 2018 Published by Elsevier B.V.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 17 June 2018
Received in revised form 26 September 2018
Accepted 8 October 2018
Available online 10 October 2018
Correlation of individual tephra layers over large areas permits the assessment of eruption magnitude and syn-
chronization of disparate sedimentary archives. The middle Pleistocene Pauzhetka caldera with a diameter of
~30 km is one of the largest in Kamchatka. Distal tephra from the caldera-forming eruption has, however,
never been found, hampering precise estimates of the eruption volume and magnitude. In this paper, we report
first geochemical identification of distal tephra from the Pauzhetka caldera in the Northwest (NW) Pacific and
Okhotsk Sea sediments recovered by ODP 145 cores 881B, 882A and 884B, and IMAGES cores MD01-2415 and
MD01-2416. Distal tephras are rhyolites of narrow compositional range allowing their reliable identification
among the studiedmarine cores usingmajor and trace element data. Geochemical correlation of the distal tephra
to the proximal stronglywelded and altered ignimbrite was performed based on immobile trace elements deter-
mined in situ by laser ablation ICP-MS. Based on this case study, we propose that a number of trace elements (U,
Th, Nb, Ta, Zr, Hf, Ti, REE, Y and Sc) are immobile during on-shore alteration of welded tuffs and can be used for
correlation of pristine glass and altered rock groundmass allowing direct identification of volcanic source of distal
tephra. Our new data on the spatial dispersal of the airborne Pauzhetka tephra in the NW Pacific sediments de-
fines its minimum dense rock equivalent (DRE) volume of ~46 km3. Together with the exposed volcanicmaterial
around the caldera, the total DRE volume is estimated at 150–170 km3 (3.8–4.4 × 105 Mt) corresponding to the
eruptionmagnitude of 7.60–7.65. Stratigraphic position of the Pauzhetka tephra in the studied cores at transition
betweenmarine isotope stage 12 and 11c (Termination V) yields a precise astrochronologic age of 421.2± 6.6 ka
(weighted mean ± 2σ), which is 27 ka younger than the published average 39Ar/40Ar dates on plagioclase from
the proximal ignimbrite. Due to the characteristic composition and precise age, the Pauzhetka tephra may serve
as a regional marker for Termination V in the NW Pacific and Okhotsk Sea sediments. A multidisciplinary ap-
proach adopted in this study is useful for identification and precise dating of the past explosive eruptions in Kam-
chatka and other volcanic arcs.

© 2018 Published by Elsevier B.V.
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1. Introduction

One of the prerequisites of predicting future giant eruptions is the
understanding of size and recurrence intervals of past similar events
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(e.g., Self and Gertisser, 2015). At the same time, the global record of
the large eruptions basedmainly on the geological evidence remains in-
complete even for the last millennia (Deligne et al., 2010) and deterio-
rates deeper in time as many eruptions are yet to be identified
(Rougier et al., 2016). This is particularly true for remote and highly ex-
plosive North Pacific volcanic arcs potentially hazardous for the North-
ern Hemisphere. One of these arcs is the Kurile-Kamchatka volcanic
chain where only Holocene explosive eruptions have been studied in
detail (e.g., Braitseva et al., 1995, 1996, 1997, 1998; Bazanova and
Pevzner, 2001; Ponomareva et al., 2004, 2013a, 2015; Kyle et al.,
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2011) while the Pleistocene record remains obscure and is dotted with
only a few dated events (Braitseva et al., 1995; Bindeman et al., 2010;
Ponomareva et al., 2013b; Seligman et al., 2014). At the same time,
Kamchatka may have the highest concentration of Quaternary calderas
per unit of arc length in theworld (Hughes andMahood, 2008),many of
which are nested so the number of caldera-forming eruptions is
definitely larger than that of the morphologically expressed calderas
(e.g., Seligman et al., 2014).

Marine sediments offshore Kamchatka contain numerous tephra
layers extensively studied over the last two decades (Cao et al., 1995;
Prueher and Rea, 2001; Gorbarenko et al., 2002, 2014; Derkachev
et al., 2012a,b; Sakamoto et al., 2005; Derkachev and Portnyagin,
2013). Derkachev et al. (2016) published a detailed account on 23 visi-
ble tephra layers in the Pleistocene-Holocene sediments of the Okhotsk
Sea, including their composition, age, aerial distribution, and correlation
with the oxygen isotope stratigraphy. Furthermore, new geochemical
data has been recently published on several tephra layers found in the
NW Pacific sediments (Ponomareva et al., 2013a,b, 2015). Despite the
high potential for these tephras to provide regional stratigraphic
markers, only the 8.4 ka Kurile Lake (KO) and ~30.4 ka Nemo (K2)
layer have been used for core age models up to this point (Gorbarenko
et al., 2002).

Many tephras from Ocean Drilling Program (ODP) Leg 145 Sites
881–884 were geochemically characterized by Cao et al. (1995). How-
ever, overlapping chemistries did not allow these authors to reliably
correlate any of the analyzed tephras between the cores or to particular
source volcanoes, thus dispersal and volume of tephra from the large
Fig. 1. Locationmaps for the study area. A. Location of the Pauzhetka caldera andODP 145 Sites 8
and 6 cm isopachs for Pauzhetka tephra (dashed where inferred). Red shading shows presume
KO tephra related to theM7 Kurile Lake caldera-forming eruption within the Pauzhetka caldera
ice extent inwinter (blue dashed lines) (Moroshkin, 1966; Rogachev, 2000; Rostov et al., 2002).
2017). C. The Pauzhetka caldera boundary (in red), remnants of the Golygin welded ignimbri
Ponomareva et al., 2004, 2006). Active volcanoes are shown with black stars. Location of 40

Electronic Supplement Table S1). (For interpretation of the references to color in this figure leg
Pleistocene eruptions remained unknown. The difficulties in identifica-
tion of source volcano arise from a lack of geochemical data on proximal
pyroclastic deposits, commonly welded, altered and retaining no volca-
nic glass, which hampers their direct comparison to glasses from distal
tephra and thus assessment of the eruption source, volume and magni-
tude. The first attempt to date major Kamchatka ignimbrites by
40Ar/39Ar geochronology resulted in a dozen of new dates for the
most prominent morphologically preserved calderas in Kamchatka
(Bindeman et al., 2010). This work has created a dataset to look for
products of these large eruptions in the NW Pacific and Okhotsk
Sea sediments.

In this paper, we present new geochemical, volumetric and age data
on a major explosive eruption in South Kamchatka (NW Pacific), which
produced the prominent Pauzhetka caldera (Fig. 1A, B). Geochemical
characterization of proximal welded ignimbrite was a challenge due to
its strong alteration. However, our new trace element data on the
welded ignimbrite groundmass has allowed us to correlate it to awidely
spread tephra preserved in ODP 145 cores 881B, 882A and 884B, and
IMAGES cores MD01-2415 and MD01-2416, and to estimate volume
of the erupted deposits and eruption magnitude. Geochemical correla-
tion of the Pauzhetka tephra in the studied cores allowed us to identify
its stratigraphic position at transition between marine isotope stage
(MIS) 12 and 11c (Termination V) and estimate its astrochronologic
age at 421.2±6.6 ka. Awide spatial dispersal, specific composition, pre-
cise age, and unique stratigraphic location within Termination V make
the Pauzhetka tephra a prominent isochron linking NW Pacific terres-
trial and marine sedimentary archives.
81, 882 and 884, and IMAGES coresMD01-2415 andMD01-2416. Red outlines show50 cm
d Pauzhetka cryptotephra dispersal. Yellow shading provides a dispersal area of the 8.4 ka
(Ponomareva et al., 2004). B. Major surface currents (black arrows) and mean annual sea
WKCurrent=West Kamchatka Current. Themapwas createdwith theODV4.0 (Schlitzer,
te sheet (red shading), Kurile Lake caldera and pre-Iliinsky collapse crater (black outline;
Ar/39Ar-dated samples of welded tuff is shown with red circles (Bindeman et al., 2010;
end, the reader is referred to the web version of this article.)
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2. Pauzhetka caldera

The 27 × 18 km Pauzhetka сaldera is located in the southernmost
part of Kamchatka and hosts two active volcanoes (Iliinsky and Dikii
Greben') and the ~8.4 ka Kurile Lake caldera (Fig. 1C; Ponomareva
et al., 2004). Caldera rim is well expressed in thewest, north and south-
east, and is obscured by younger deposits in the south and northeast.
The Pauzhetka caldera is surroundedby eroded remnants of once exten-
sive ignimbrite sheet (“Golygin ignimbrite”), which is the only known
product of a major caldera-forming eruption (Fig. 1C; Melekestsev,
1980; Erlich, 1986). Golygin ignimbrite is strongly welded. Three
40Ar/39Ar dates on plagioclases sampled from different lobes of the
extra-caldera ignimbrite suggested the eruption age of 448 ± 20 ka
(2σ weighted mean based on the original dates by Bindeman et al.,
2010). Total magma volume for this eruption was estimated at
200 km3 based on the evaluation of published data on the extra- and
intra-caldera ignimbrite volumes, and addition of the same volume of
airborne ash (Bindeman et al., 2010). However, airfall tephra from the
Pauzhetka eruption has never been identified and its dispersal and vol-
ume remained unknown.

Only a few later explosive eruptions within the Pauzhetka caldera
have been identified: the ~8.4 ka Kurile Lake caldera-forming eruption,
and Holocene activity from Iliinsky and Dikii Greben' volcanoes
(Bindeman and Bailey, 1994; Ponomareva et al., 2001, 2004, 2006). In
addition, a late Pleistocene proto-Kurile Lake caldera eruption was sug-
gested in the eastern part of the Pauzhetka caldera (Melekestsev et al.,
1974, 1991) but its products have never been identified.
Fig. 2.Pauzhetka tephra in theNorthwest Pacific core881B southeast fromKamchatka. The
tephra is present in two adjacent core sections 3H-6 and 3H-7: a massive ash deposit
exhibits some changes in color but no admixture of sediments or compositionally
different glasses throughout the layer. Geochemically analyzed tephra samples are
shown with red squares. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
3. Materials and methods

3.1. Samples

3.1.1. Distal tephra in marine cores
In the course of our research on the largest Kurile-Kamchatka explo-

sive eruptions (Ponomareva et al., 2016) we have sampled and geo-
chemically analyzed Pliocene-Pleistocene tephra from five marine
sedimentary cores located 550–670 km west, east and southeast of
Kamchatka (Fig. 1A; Electronic Supplement Table S1). Sites 881, 882
and 884 (for those we studied cores 881B, 882A and 884B) were drilled
in the NW Pacific during ODP Leg 145 of the R/V JOIDES Resolution in
1992 (Rea et al., 1993). Core MD01-2415 was recovered in the Okhotsk
Sea and core MD01-2416 in the NW Pacific during WEPAMA cruise of
the R/V Marion Dufresne in 2001 in the frames of IMAGES program
(Holbourn et al., 2002). Among the NW Pacific cores, Site 881 is posi-
tioned on the abyssal plain, and Sites 882 and 884 and core MD01-
2416 are on the Detroit Seamount of the Emperor Seamount Chain
(Fig. 1A, B). Core MD01-2415 is located on the northern continental
slope of the Okhotsk Sea (Fig. 1A, B).

The most prominent tephra within the MIS 12-11c interval
(478–395 ka; Lisiecki and Raymo, 2005), which encompasses the
40Ar/39Ar age of the Pauzhetka eruption (448 ± 20 ka, Bindeman
et al., 2010) was geochemically correlated between the cores (see
Section 4.1) and provisionally identified as belonging to the Pauzhetka
caldera-forming eruption. In the NW Pacific cores, samples were taken
from a visible tephra layer in cores 881B (Fig. 2), 882A and 884B, and
from a sediment layer enriched in tephra pods in core MD01-2416
(Figs. 3 and 4). The tephra layer is 4 to 8.5 cm thick in three cores
from the Detroit Seamount and 50 cm thick in core 881B from the abys-
sal plain (Fig. 1A; Electronic Supplement Table S1). The tephra is repre-
sented by fine-grained ash with a typical size of particles of 50–100 μm.
The particles are predominantly elongated fragments of bubble walls
and their triple junctions, more rarely pumiceous fragments (Fig. 5A,
B). In the Okhotsk Sea core MD01-2415, samples were collected from
a glass concentration zone (cryptotephra) between 2306 and 2313 cm
with a major peak at 2312–2313 cm recognized during count of ice-
rafted detritus (IRD) in the N125 μm sediment fraction (Figs. 3 and 4;
Bubenshchikova et al., 2015).

3.1.2. Proximal deposits
In order to geochemically characterize proximal pyroclastic deposits

associated with the Pauzhetka caldera-forming eruption and to corre-
late them with tephra in the studied marine cores, we used two of
three 40Ar/39Ar-dated samples from the opposite lobes of the Golygin
welded tuff: C-708 (436 ± 56 ka), and 1973E-177 (441 ± 72 ka)
(Fig. 1C; Electronic Supplement Table S1; Bindeman et al., 2010). The
samples are quartz-plagioclase-phyric welded tuffs with devitrified
glass matrix (Fig. 5C).

3.2. Electron microprobe analysis (EMPA)

Volcanic glasses from tephras and groundmass phases in sample of
welded tuff were analyzed at GEOMAR (Kiel, Germany) using JEOL
JXA 8200 electron microprobe equipped with five wavelength disper-
sive spectrometers including 3 high-sensitivity analyzer crystals (2



Fig. 3. Position of Pauzhetka tephra against paleoceanological proxies for transition from
marine isotope stage (MIS) 12 to 11c. Red solid and dashed lines mark the tephra ages
defined for the bottom depths of the tephra layers (Table 1). Note, that data on one of
two equivalent age models are presented for core MD01-2416. The LR04 benthic δ18O
stack (light blue) is after Lisiecki and Raymo (2005). A. Site 882. The magnetic
susceptibility (MS), Ca/Al XRF (pale), Ba/Al XRF (black) and Uvigerina spp. δ18O (dark
blue) data are compiled from cores 882A and 882B after Rea et al. (1993), Haug et al.
(1995) and Jaccard et al. (2010). Composite depth and age models are after Tiedemann
and Haug (1995) and Jaccard et al. (2010). B. Core MD01-2416. The relative abundance
of ice rafted debris (IRD) in N150-μm fraction, MS, Ca XRF (pale) and Uvigerina spp. δ18O
(dark blue) data are after Bassinot and Waelbroeck (2002) and Gebhardt et al. (2008).
Age model is after Gebhardt et al. (2008). C. Core MD01-2415. The absolute abundances
of volcanic glasses (green area) and IRD (black) in N125 μm fraction, MS, CaCO3 (pale),
color b* (black), Uvigerina spp. δ18O (dark blue) data are after Bassinot and Waelbroeck
(2002) and Bubenshchikova et al. (2015). Age model is after Bubenshchikova et al.
(2015). Term V = Termination V. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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PETH and TAPH). The analytical conditions for glasses were 15 kV accel-
erating voltage, 6 nA current and 5 μmelectron beam size. The details of
the analytical conditions and data reduction can be found in the
electronic supplement to Ponomareva et al. (2017). In total we obtained
178 electron microprobe analyses of glasses from 10 tephra samples
and 20 analyses of groundmass phases in welded tuff (Electronic Sup-
plement Tables S1, S2, and S5).

3.3. Laser ablation - inductively coupled plasma - mass-spectrometry (LA-
ICP-MS) analysis

Trace element analysis by laser ablation-inductively coupled
plasma-mass spectrometry (LA-ICP-MS) was performed on two
40Ar/39Ar dated samples of Golygin welded tuff (groundmass) and on
glasses (single shards) from two tephra samples in cores 881B and
882A (Electronic Supplement Tables S1 and S3). The analyseswere per-
formed in the Institute of Geosciences at the Christian-Albrecht Univer-
sity (Kiel, Germany) using a quadrupole ICP-MSAgilent 7900 coupled to
a Coherent GeoLasHD ArF 193 nm excimer laser ablation system that
was operated with a fluence of 5 J·cm−2, a repetition rate of 10 Hz,
and 24 μm laser beamdiameter. Analyseswere performed using amod-
ified large volume ablation cell (Fricker et al., 2011) in a flow of He
(0.7 L·min−1) with addition of 14 mL·min−1 H2. The carrier gas was
mixed with Ar (~1 L·min−1) prior to introduction to the ICP-MS. Ten
major elements and 31 trace elements were analyzed. Analyses in-
cluded 20 s background (laser-off) and 30 s signal (laser-on) measure-
ments. Dwell time for different elements varied from 5 to 20 ms
depending on their abundance, and one complete measurement cycle
lasted 0.607 s. Initial data reductionwas performed in GLITTER software
(Griffin et al., 2008) that included manual selection of integration win-
dows for background and analytical signal and preliminary calibration.
The intensities corrected for background and averaged over the selected
intervalswere normalized to the intensity of 43Ca isotope and converted
to concentrations by matching the sum of 10 element (Si, Ti, Al, Fe, Mn,
Mg, Ca, Na, K, P) oxides to 100 wt% (e.g., Kimura and Chang, 2012). The
calibration and correction of instrumental drift was based on ATHO-G
reference glass (Jochum et al., 2006), which was measured two times
after every 18 spots. The datawas furtherfiltered for inclusion of pheno-
cryst phases by comparison ofmajor element concentrationswith those
obtained by EMPand obvious outlierswere rejected. BCR2-G, KL2-G and
STHS60/8-G glasses (Jochum et al., 2006) were analyzed as unknown
(Electronic Supplement Table S3). Based on this data, the analytical pre-
cision and accuracy are typically between ±2–8 relative (rel.) % for ca.
20 s long analyses.

LA-ICP-MS data for Na calibrated against ATHO-G glass with recom-
mended Na2O = 3.75 wt% (Jochum et al., 2006) was found to be sys-
tematically offset by ~10 rel. % from the recommended Na values for
other reference materials and our EMP data for glass shards with
known major element composition. This offset mentioned also by
Lowe et al. (2017) suggests that the Na2O content in ATHO-G glass is
likely underestimated. To comply with EMP data, all LA-ICP-MS ATHO-
G-calibrated Na concentrations were corrected by a factor of 1.113,
which was obtained by fitting data for BCR2-G, KL2-G and STHS60/8-
G. This correction has negligible effect (≤0.5 rel. %) on the calculation
of concentrations of other elements and was not taken into account.

3.4. Assessment of tephra age in marine cores

Astrochronologic ages of the studied tephra layers were estimated
using high-resolution stratigraphic frameworks for Site 882, and cores
MD01-2415 and MD01-2416 (Table 1; Galbraith et al., 2008; Gebhardt
et al., 2008; Jaccard et al., 2010; Bubenshchikova et al., 2015). For
cores 881B and 884B, only low-resolution age models presented in the
ODP Leg 145 report were available (Morley et al., 1995; Barron et al.,
1995), which provided less precise tephra age estimates (Table 1). For
Site 882 we used composite depth-age model based on cores 882A
and 882B (Tiedemann and Haug, 1995; Jaccard et al., 2010). The tephra
ages were calculated by linear interpolation between tie-points in the
core age models. The associated age uncertainties (1σ) were estimated



Fig. 4. Position and thickness of Pauzhetka tephra shown togetherwith the coremagnetic susceptibility (MS) for transition frommarine isotope stage (MIS) 12 to 11c. For cores 881B and
884B, theMSdata are after Rea et al. (1993). For coresMD01-2415 andMD01-2416, theMS data are after Bassinot andWaelbroeck (2002). For Site 882, theMSdata and composite depths
were compiled based on cores 882A and 882B after Rea et al. (1993) and Tiedemann and Haug (1995). Term V = Termination V.
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for the ages derived from the high-resolution age models following ap-
proach byGovin et al. (2015) (Electronic Supplement Table S4). In order
to examine the tephra synchronicity or lead/lag between the cores, we
compared paleoceanographic and paleoclimatic conditions at the
times of the tephra deposition using published proxy records of Site
882 and cores MD01-2415 andMD01-2416 (Fig. 3) as well as sedimen-
tarymagnetic susceptibility (MS) datameasured on board and available
for all the studied cores (Fig. 4).

4. Results and discussion

4.1. Glass composition

The studied tephra layers were correlated between cores 881B,
882A, 884B and MD01-2416 in the NW Pacific and core MD01-2415 in
the Okhotsk Sea (Fig. 1A) based on close similarity of major element
compositions of volcanic glasses (Fig. 6; Table 1; Electronic Supplement
Tables S1–S3). The tephra glasses have slightly variable medium-K rhy-
olite composition with 77 and 78.5% SiO2 and a very narrow range of
other major and minor elements determined with EMP (Fig. 6). The
minor variability of the glass compositions between the cores as well
as bottom-to-top variations within the tephra layer in core 881B only
marginally exceed the analytical uncertainty and can be explained by
natural compositional variability ofmelts from a large and composition-
ally slightly heterogeneous magma chamber.

Trace element compositions of the tephra glasses in distant cores
881B and 882A are identical within the analytical uncertainty (Figs. 1
and 7). The mantle-normalized trace element patterns are typical for
subduction-related Si-rich melts. Characteristic features of these pat-
terns are: spoon-shaped distribution of rare earth elements (REE)
with negative Eu anomaly and overall enrichment of light rare earth el-
ements (LREE) over middle- and heavy rare earth elements (HREE),
island-arc source-related high Kn/Lan, Pbn/Cen, Thn/Nbn, Bn/Lan, low
Nbn/Lan (subscript n refers to the mantle-normalized concentrations),
and mineral fractionation-related low Srn/Cen (plagioclase control),
Pn/Smn (apatite control), Tin/Gdn (magnetite and ilmenite control)
ratios.

Based on close resemblance of major and trace element composi-
tions of tephra glasses in all the studied cores and close age estimates
for the tephra layers (Table 1; see Section 4.2) we suggest that all the
layers represent the same tephra and likely originate from the same
volcanic eruption. The tephra dispersal in the NW Pacific sediments
(Fig. 1A) indicates its source within South Kamchatka so the studied
tephra layers seem to be a likely distal counterpart for the Pauzhetka
erupted products.

Unfortunately, our attempts to match the distal tephra to the pyro-
clastic deposits near the Pauzhetka caldera with the help of microprobe
glass analysis failed for a lack of fresh glass in Golygin welded ignim-
brite. The latter is composed of large phenocrysts of quartz and plagio-
clase and accessory pyroxenes, Fe-Ti-oxides, apatite and zircon placed
in massive to slightly porous groundmass (Fig. 5C). The groundmass
has cryptocrystalline texture composed by microcrystals of magnetite
and non-stoichiometric phases with compositions trending toward
quartz, K-feldspar, and plagioclase, which are interpreted to be the
products of glass alteration (devitrification) in the initially glassy tuff
(Electronic Supplement Table S5).

EMP data for devitrified glass shows a very strong compositional
heterogeneity on a micron scale (Fig. 8, Electronic Supplement
Table S5), which does not permit using this data for reliable comparison
with fresh glasses from tephras in marine cores. LA-ICP-MS major ele-
ment data is less scattered as it represents an average composition for
volume of an order of magnitude larger compared to EMPA (~1000
μm3 for 24 μm laser spot vs. ~80 μm3 for 6 μm EMP spot). The LA-ICP-
MS data plots closer to the anticipated Pauzhetka glass, partly overlaps
with the glass compositions but shows larger variability.

Trace element concentrations and their relative variability in
devitrified groundmass of welded Golygin ignimbrite are shown in
Fig. 9. Alkali (Li, K, Rb, Cs), alkali earth elements (Ba, Sr), B, Eu and V ex-
hibit large variability (=100% × 2σ/Mean), exceeding 40% and suggest-
ing significant mobility of these elements during glass alteration and
redistribution between different secondary mineral phases. Variations
of alkalis and alkali earths are likely related to their redistribution be-
tween secondary plagioclase depleted in K and Rb and enriched in Sr,
Eu, Ba and K-feldspar, in contrast to plagioclase, enriched in K and Rb
and depleted in Sr, Ba and Eu. Large variations of V content can be ex-
plained by entrapment of variable amount of V-rich magnetite. The
other 24 trace elements analyzed (U, Th, Nb, Ta, Zr, Hf, Ti, REE, Y and
Sc) exhibit a relatively small variability not exceeding 40% even for the
least abundant elements (Fig. 9B). These elements are considered as im-
mobile during glass alteration. In this work we used the variability of
40% as an empiric threshold value to identify mobile and immobile ele-
ments. Additional research is, however, needed to place more robust



Fig. 5. Back-scattered electron images of polished sections of the Pauzhetka tephra glasses
in marine cores and proximal welded tuff embedded in epoxy resin. A, B. Tephra in core
881B and 882A, respectively. C. Golygin welded tuff (sample 1973E-177). Qtz - quartz.
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constraints on formal criteria for the elementmobility in altered tuffs in
subaerial environment. Successful correlation of altered welded ignim-
brites using immobile trace elements compositions of bulk samples
has been recently reported by Gisbert and Gimeno (2017).

Average concentrations of trace elements in altered glass from
welded Golygin ignimbrite are compared to glass compositions in
Fig. 7. The data shows a very close resemblance of tuff and tephra glasses
in concentrations of immobile elements. Average concentrations of mo-
bile elements in altered glass, except for Li, are also very close to glass
composition. This coincidence suggests that the welded tuff alteration
was mostly in-situ re-distribution of elements between secondary
phases, not an exchange of elements between glass and aqueous fluid
that has been well documented for hydrated ignimbrite glasses
(e.g., Scott, 1971; Jezek and Noble, 1978). Li depletion observed in al-
tered glass from welded tuff may be related to Li loss during its slow
cooling, lithification, and weathering, while Li rich tephra glasses may
represent undegassed and rapidly quenched melts (e.g., Hofstra et al.,
2013).

In summary, LA-ICP-MS data on concentrations of immobile trace el-
ements suggests that the tephra layers from all the studied cores and
Golygin welded tuff belong to the same Pauzhetka eruption.

4.2. Timing of the Pauzhetka caldera-forming eruption

The 40Ar/39Ar age of 448 ± 20 ka (weighted mean ± 2σ; Bindeman
et al., 2010) for the Pauzhetka eruption falls within a time range of the
glacial MIS 12, which duration has been defined from 478 to 424 ka in
the LR04 benthic δ18O record (Lisiecki and Raymo, 2005) (Fig. 10). Dif-
ferences in the MIS 12 duration between the LR04 time scale and other
recent scales, such as the European Project for Ice Coring in Antarctica
(EPICA) Dome C (EDC3) and the Antarctic Ice Core Chronology 2012
(AICC2012) are b5 ka that is well within the quoted age uncertainty of
6 ka (Parrenin et al., 2007; Bazin et al., 2013).

Our study of the stratigraphic position, timing and paleoconditions
at the time of the Pauzhetka tephra deposition inmarine cores indicates
a younger eruption age as compared to the mean 40Ar/39Ar age. The es-
timates of tephra age in different cores vary from 418.2 to 446.1 ka
(Table 1). Four younger age estimates, which fall into the 418.2 to
423.6 ka range, were derived from the high-resolution age models for
Site 882 and cores MD01-2415 and MD01-2416 (Table 1) (Galbraith
et al., 2008; Gebhardt et al., 2008; Jaccard et al., 2010; Bubenshchikova
et al., 2015). These estimates suggest that the eruption took place during
the transition between glacial MIS 12 and interglacial MIS 11c referred
to as Termination V, and specifically, during its late stage (Fig. 10). The
timing for the Termination V is similar in the LR04, EDC3 and
AICC2010 time scales, and the Termination V temporal midpoint is
within the 424–426.6 ka range (Lisiecki and Raymo, 2005; Parrenin
et al., 2007; Bazin et al., 2013). Close independent age estimate for Ter-
mination V (425 ± 5 ka, weighted mean ± 2σ) has been recently pro-
vided by Marra et al. (2016) based on the 40Ar/39Ar age of a volcanic
layer within the San Paolo aggradational succession of the Paleo-Tiber
River (Rome, Italy).

In general, a glacial termination is defined between the start and end
of the rapid decrease inmarine δ18O during transition from glacial to in-
terglacial climate conditions (e.g., Broecker and Van Donk, 1970;
Lisiecki and Raymo, 2005). The position of the Pauzhetka tephra layers
relatively to the availableUvigerina spp. δ18O records supports the erup-
tion time during the late Termination V (Fig. 3A–C). The tephra age es-
timates ranging from 418.2 to 423.6 ka are within the calculated age
uncertainties (1σ) from 6.1 to 6.8 ka arising mainly from the dating er-
rors of the reference records used for the age models for Site 882 and
cores MD01-2415 and MD01-2416 (Table 1; Electronic Supplement
Table S4). This suggests the age variations are an artefact of the refer-
ence records rather than a result of the asynchronous deposition of
the tephra in these cores.

Among the two older tephra age estimates, one - 430.8 ka in core
884B - points to the eruption time close to onset of the Termination V,
while the other – 446.1 ka in core 881B - indicates the eruption time
during the glacial MIS 12 (Table 1). However, these estimates were de-
rived from the initial low-resolution age models based on diatom and
radiolarian biostratigraphy (Table 1; Barron et al., 1995; Morley et al.,
1995), and therefore are considered as questionable. Moreover, the
tephra position relative to the MS records in cores 881B and 884B
(Fig. 4) does not support the glacial MIS 12 age of the eruption as
shown below.

The comparison of the proxy records of the closely located NW Pa-
cific Site 882 and core MD01-2416 (Fig. 3) (Gebhardt et al., 2008;
Jaccard et al., 2010) documents similar paleoceanological conditions at
the time of the Pauzhetka tephra deposition. In both cores, the tephra
is positioned 3–5 ka after the end of active ice rafting and 1–3 ka after
thefirst notable increase in themarine productivity/CaCO3 preservation
as indicated by the IRD and/orMS, Ca/Al, Ba/Al, and CaXRF data (Fig. 3A,



Table 1
Overview of age estimates for the Pauzhetka tephra based on marine cores.

Deposit Core Depth
(bottom, cm)

Thickness
(cm)

Composite
depth
(bottom, cm)

Age
estimate
(ka)

Age
uncertainty
(1σ, ka)b

Age modelc Reference

Method Period
(Ma)

Tephra ODP145-881B 2435 50.0 – 446.1 – Radiolarian events, magnetostratigraphy 0–1 Morley et al.
(1995)

Tephra ODP145-882A 1918.5 6.5 2217a 418.2a 6.7 Initial astronomical calibration of the
magnetic susceptibility and density curves;
correlation of the XRF Ba/Al curve to the
EPICA Dome C (EDC) δD ice record on the
EDC3 time scale (Jouzel et al., 2007)

0–0.8 Tiedemann and
Haug (1995) and
Jaccard et al.
(2010)

Tephra ODP145-884B 2530 4.0 – 430.8 – Radiolarian and diatom events,
magnetostratigraphy

0–16 Barron et al.
(1995)

Tephra MD01-2416 2248.5 8.5 – 423.2 6.1 Magnetostratigraphy, correlation of the
benthic δ18O curve to the planktic δ18O
stack (Bassinot et al., 1994)

0–1.28 Gebhardt et al.
(2008)

419.2 6.7 Correlation of the XRF Ca curve to the XRF
Ca/Ti record of Site 882, having the
EDC-based ages (Jouzel et al., 2007)

0–0.5 Galbraith et al.
(2008)

Crypto-tephra MD01-2415 2313 – – 423.6 6.8 Initial astronomical calibration of the color
b* record; correlation of the color b* and
benthic δ18O curve to the LR04 stack
(Lisiecki and Raymo, 2005)

0.39–0.44 Nürnberg and
Tiedemann
(2004) and
Bubenshchikova
et al. (2015)

Note: The age estimates accepted in this study are provided in bold.
a Based on the composite age-depth models for ODP145 Site 882 (Tiedemann and Haug, 1995; Jaccard et al., 2010).
b Calculations presented in the Electronic Supplement Table S4.
c Beyond the radiocarbon dating range.
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B). In the high-resolutionUvigerina spp. δ18O record of coreMD01-2416
(Fig. 3B) (Gebhardt et al., 2008), the tephra correlates with a local in-
crease in the δ18O values caused likely by a minor cooling during
Fig. 6. Composition of the Pauzhetka tephra glasses in marine cores (electron microprobe data)
The fields of medium- and high-K rocks according to Gill (1981). Analytical uncertainty of sing
warm late Termination V. The low-resolutionUvigerina spp. δ18O record
of Site 882 (Fig. 3A) (Haug et al., 1995) precludes precise correlation al-
though the occurrence of the tephra within the late Termination V is
(A), composition of glasses from the bottom and top of the tephra layer in core 881B (B).
le points is expressed as 2σ. Oxide concentrations are given in wt%.



Fig. 7. Comparison of average trace element compositions of the Pauzhetka tephra glasses in cores 881B and 882A and altered groundmass in two samples of Golygin welded ignimbrite
(LA-ICP-MS data). Concentrations normalized to primitive mantle values (McDonough and Sun, 1995). Error bars correspond to 2σ.
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evident. The results support the synchronous tephra deposition in the
NW Pacific Site 882 and core MD01-2416 and preclude significant re-
deposition by ice rafting.

In the Okhotsk Sea coreMD01-2415, themajor peak of the Pauzhetka
cryptotephra at 423.6 ka occurs 2 ka after the end of active ice rafting and
0.5–1 ka after the first notable increase in the marine productivity/CaCO3

preservation as evidenced from the IRD, MS, CaCO3 (wt%) and color b*
data (Fig. 3C). It implies that the paleoceanological conditions at the
time of the cryptotephra deposition in the Okhotsk Sea were close to
those of the tephra deposition in the NW Pacific (Fig. 3A–C). At the
same time, the secondary cryptotephra peak in core MD01-2415 at 423
to 421.5 ka correlates with the last small IRD increase recorded in the
IRD curve only (Fig. 3C). It may indicate that the final cease of active sea
ice rafting on the northern slope of the Okhotsk Sea occurred a few ka
later than in the NW Pacific, and that the sea ice played a role in
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Our further analysis of the position of the Pauzhetka tephra layers rel-
ative to the MS curves (Fig. 4) provides additional evidence of simulta-
neous tephra deposition in all the studied cores. In general, the MS of
marine sediments is controlled by variations in the IRD supply and,
since the onset of theNorthernHemisphere glaciations at ~2.6Ma, is char-
acterized by low values during interglacial periods and high values during
glacial periods (e.g., Past Interglacials Working Group of PAGES, 2016).
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The appearance of the Pauzhetka tephra layer soon after an interval of a
rapid decrease in theMSvalues (Fig. 4) indicates the eruption time during
the late Termination V in all the studied cores including core 884B, where
the glacial-interglacial variations of the MS are less straightforward. The
results also indicate that the glacial age estimates in cores 881B and
884B are not consistentwith the actual tephra position beyond the glacial
MIS 12 (Table 1 and Fig. 4) and therefore we treat them as unreliable.

Based on themarine core data,we suggest that the Pauzhetka caldera-
forming eruption took place within an interval of 418.5–423.6 ka or at
421.2±6.6 ka (weightedmean±2σ),which corresponds to the late Ter-
mination V (Fig. 10). The discrepancy between the astrochronologic and
40Ar/39Ar ages for the Pauzhetka eruption is likely a result of the uncer-
tainties associated with the 40Ar/39Ar dating on bulk plagioclase crystals
and astrochronologic age models.

The Pauzhetka tephra/cryptotephra can serve as a marker for corre-
lating paleoenvironmental archives among different cores in the NW
Pacific and the Okhotsk Sea. It pinpoints a certain short paleoclimate
event, specifically a short minor cooling during warm late Termination
V (Fig. 3), and permits its tracing through various proxy records. Thus,
the Pauzhetka tephra may permit an assessment of synchronicity or
lead/lag of climatic shifts between disparate cores that is valuable in
the paleoceanographical studies.

4.3. Tephra dispersal and eruption magnitude

The Pauzhetka tephra is expressed as a visible layer only east of the
caldera in the NW Pacific cores with the maximum tephra thickness
(50 cm) in core 881B, ~600 km south-southeast from the source
(Fig. 1A). This core lies beneath the southward flowing branch of the
Western Subarctic Gyre (Fig. 1B) that could quickly transport a large
amount of tephra from the shelf toward the core location and thus in-
crease a local thickness of the tephra layer. However, in core 881B, the
Pauzhetka tephra forms a massive ash layer that exhibits some changes
in color but no distinct layering or contamination with the sediment
(Fig. 2), which suggests that redeposition of ash within this layer is un-
likely. Glasses from the bottom and the top of the tephra layer are com-
positionally similar but the former have slightly higher SiO2 contents
(Fig. 6B), which is consistent with the “inverted stratigraphy” during
typical evacuation of the zoned silicic magma chamber with most
evolved material at the onset of a large silicic eruption. Based on the
maximum tephra thickness, we suggest that the ashfall axis was di-
rected south-southeast from the source. In the Okhotsk Sea core
MD01-2415, located ~560 km west of the caldera (Fig. 1A), the major
peak of the Pauzhetka cryptotephra at 423.6 ka might have been also
derived from the primary tephra fall, which is assumed from its strati-
graphic position and age close to those for the Pauzhetka visible tephra
in theNWPacific cores. Alternatively, it could have originated from syn-
eruptive erosion of fresh loose tephra and its redeposition into marine
sediments with the help of sea ice and West Kamchatka current.

We have developed a preliminary estimate of Pauzhetka tephra dis-
persal based on themeasured thicknesses in these cores (Fig. 1A). As the
mean subduction rate of the Pacific Plate under Kamchatka is ~8 cm/yr
(DeMets, 1992), at the time of the eruption the NW Pacific sites were
~34 km farther east from the caldera. This offset is negligible compared
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to the dimensions of the isopach area and thus ignored in our assess-
ment. The closely located NW Pacific cores 882A, 884B and MD01-
2416 have a mean tephra thickness of 6 cm. These data combined
with the 50 cm tephra thickness in core 881B is sufficient to delineate
the 50 cm and 6 cm isopachs (Fig. 1A). The cryptotephra found in the
Okhotsk Sea core MD01-2415 cannot be used for the isopach map as
the thickness of the primary tephra layer is uncertain.

Tephra volume was calculated using the single-segment expo-
nential law (Pyle, 1989) in AshCalc software (Daggitt et al., 2014),
which is the most suitable approach in the case when only two
isopachs are available. The minimum bulk volume of the Pauzhetka
airfall ash comprises 200 km3, which is consistent with a single-
isopach estimate based on the approach by Legros (2000) for each
isopach (185 km3 and 128 km3 for 50 cm and 6 cm, respectively).
The bulk volume of 200 km3 is close to the minimum estimate
and is valid only if core 881B lies exactly on the ash-fall axis,
while any offset between the cores and the axis will increase the
volume.

The total volume of the Pauzhetka eruptives includes (a) volume of
the caldera fill (60–300 km3, Bindeman et al., 2010, and references
therein); (b) volume of the extra-caldera ignimbrite (70–100 km3,
Bindeman et al., 2010); and (c) volume of the airfall ash. Bindeman
et al. (2010) evaluated all available estimates for the caldera fill and
extra-caldera ignimbrite volumes and came up with a volume of
130–160 km3. The airfall ash was arbitrarily assigned the same volume,
by quoting examples of the similar arc eruptions elsewhere, which pro-
vided the total minimum erupted volume of 260–320 km3 (Bindeman
et al., 2010), corresponding to dense rock equivalent (DRE) volume of
130–160 km3.
Our estimates of a minimal volume of airfall ash (200 km3) allow us
to increase the minimum total eruptive volume to 330–360 km3.
Adopting the mean welded tuff density of ~2 g/cm3 (Bindeman et al.,
2010), ash density of 0.6 g/cm3 (e.g., Kutterolf et al., 2008b) and rhyolite
density of 2.6 g/cm3, we obtain the total erupted mass of 3.8–4.4
× 105 Mt and DRE volume of 150–170 km3 (46 km3 distal tephra and
100–123 km3 proximal deposits), which corresponds to the eruption
magnitude of 7.60–7.65 (Mason et al., 2004). We believe that this is a
conservative estimate of the eruption magnitude, which will increase
with further identification of Pauzhetka tephra farther south in the
NW Pacific sediments. Our estimates make the Pauzhetka caldera-
forming eruption the second biggest documented eruption for Kam-
chatka, after the 1.78 Ma Karymshina caldera (Leonov and Rogozin,
2007; Bindeman et al., 2010).

5. Conclusions

1. A widely spread middle Pleistocene tephra was identified and corre-
lated among ODP 145 cores 881B, 882A and 884B and IMAGES cores
MD01-2415 and MD01-2416 located in the Northwest Pacific and
Okhotsk Sea based on electron microprobe and LA-ICP-MS data,
which suggests a M 7.6 explosive eruption from Kamchatka, the sec-
ond largest eruption documented in this region. Our estimates of the
eruption volume and magnitude are conservative and may increase
with identification of tephra farther south in the North Pacific
sediments.

2. Identification of the eruption source was possible through the com-
parison of trace element compositions obtained in tephra glasses
from the studied cores and for groundmass of strongly welded and
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altered Golygin ignimbrite surrounding the Pauzhetka caldera
(South Kamchatka). A large number of trace elements (24), reliably
analyzed with LA-ICP-MS, were found to be immobile during the
glass alteration in thewelded tuff and can be used for the direct com-
parison with the glasses from distal tephra.

3. Stratigraphic position of the Pauzhetka tephra relative to
paleoclimate proxies suggests that the caldera-forming eruption
took place at the transition from glacial MIS 12 to interglacial
MIS 11c (Termination V) and specifically, during minor cooling
within its warm late stage. Based on published high-resolution
age models for Site 882 and cores MD01-2415 and MD01-2416,
the astrochronologic age of the eruption is estimated within an in-
terval of 418.2–423.6 ka or 421.2 ± 6.6 ka (weightedmean± 2σ),
that is 27 ka younger than the average 40Ar/39Ar age of 448 ± 20 ka
obtained for the proximal deposits (Bindeman et al., 2010). The rea-
sons for the discrepancy between the astrochronologic and 40Ar/39Ar
ages have to be further investigated once new single-grain 40Ar/39Ar
dates on the erupted deposits, high-resolution age models for the
NW Pacific marine cores, and independent age constrains for the
Termination V become available.

4. The case study of the Pauzhetka eruption demonstrates that the
combination of volcanological, paleoceanological and geochemical
methods has a great potential to reconstruct the history of explosive
volcanism in areas, where long-time record is fragmentary. This
approach profits from studies of the tephra deposits preserved in
marine sediments downwind of volcanic areas that provides oppor-
tunity to estimate precise astrochronologic age, volume and magni-
tude for eruptions. Verification of potential correlations between
the distal tephra layers and proximal deposits is possible by using a
large number of major and trace elements or just immobile trace el-
ements to compare compositions of tephra glasses and groundmass
in altered welded tuffs. This approach has proved to be effective in
Kurile-Kamchatka volcanic arc and is readily applicable in other
island-arcs worldwide.
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