УДК 550.34

НОВЫЕ ДАННЫЕ О СЕЙСМОРАЗРЫВЕ ОЛЮТОРСКОГО ЗЕМЛЕТРЯСЕНИЯ (MW 7.6, 21.04.2006 г., КОРЯКИЯ, РОССИЯ)

© 2010 Т.К. Пинегина¹, А.И. Кожурин²

¹Институт вулканологии и сейсмологии ДВО РАН, Петропавловск-Камчатский, 683006; e-mail: pinegtk@kscnet.ru ²Геологический институт РАН, Москва, 119017

В статье представлены новые данные о положении, морфологии и кинематике Олюторского сейсморазрыва 2006 г. На юго-восточном борту Вывенской впадины (северо-западные склоны хребтов Яхтынын и Мэминэй) преобладающими являются взбросовые нарушения с подчиненной правосдвиговой компонентой. На юго-западном окончании системы взбросов с ними динамически и кинематически связан пересекающий хребет Яхтынын сейсморазрыв северо-западного простирания чисто левосдвиговой кинематики. Разрывы с преобладающей правосдвиговой компонентой имеют ограниченное распространение и располагаются в тылу системы взбросов.

Ключевые слова: Олюторское землетрясение, положение сейсморазрывов, кинематика.

ВВЕДЕНИЕ

Изучение сейсмотектонических последствий сильных землетрясений важно по нескольким причинам. Во-первых, в распространении сейсморазрывов и их кинематике проявляются основные закономерности активного деформирования района эпицентральной зоны и ее окружения. Во-вторых, такие параметры сейсморазрывов, как общая длина, распределение величины общего смещения вдоль разрыва, его максимальное и среднее значения, сопоставляемые с магнитудой вызванного подвижкой землетрясения, являются основой для оценки сейсмического потенциала активных разломов и в итоге – сейсмической опасности, связанной с ними. Именно поэтому сильное землетрясение, позволяющее предполагать выход разлома, по которому произошла подвижка, на земную поверхность, представляет событие, вызывающее интерес исследователей и инициирующее комплекс работ. При этом любые новые данные, позволяющие полнее представить распределение и характер сейсмотектонических деформаций, исключительно важны.

21 апреля 2006 г. на территории Корякского автономного округа (КАО) произошло сильнейшее за период исторических и инструментальных наблюдений в этом районе землетрясение с магнитудой Mw = 7.6. Координаты эпицентра: 60.91° с.ш., 166.98° в.д., глубина гипоцентра составила около 10 км (Global...). За последующий месяц в районе произошло множество афтершоков, четыре из которых имели магнитуду $M \ge 6$.

Работы в эпицентральной зоне землетрясения, выполнявшиеся сразу после него и затем летом 2006 г., включали макросейсмические и сейсмотектонические исследования (Пинегина, 2007; Пинегина, Константинова, 2006; Рогожин и др. 2007). Их итогом было прежде всего обнаружение трех основных участков (сегментов) распространения сейсморазрывов. Изучение сейсморазрывов было осложнено труднодоступностью территории, сложными погодными и ландшафтными условиями, в связи с чем в 2006 г. удалось посетить не все сейсморазрывы. В итоге опубликованные схемы распространения сейсмотектонических деформаций различаются детальностью и полнотой отражения реальной картины. В настоящее время широкоизвестная схема (Рогожин и др., 2007, 2009, 2010) включает три сегмента с разной кинематикой движений: левосдвиговый юго-западный длиной 16 км, правосдвиговый центральный протяженностью ~45 км и северовосточный надвиго-взбросовый с подчиненной правой компонентой и длиной ~75 км (рис. 1). Общая длина сейсморазрывов составляет ~140 км. Примечательной особенностью схемы является то, что два первых сегмента - сдвиги разного зна-

Рис. 1. Положение и кинематика сейсморазрывов Олюторского землетрясения по схеме Рогожина и др. (2007; 2009): *1* – левые сдвиги; *2* – правые сдвиги; *3* – взбросы (бергштрихи здесь и далее на всех рисунках направлены в сторону взброшенного крыла). Районы детальных исследований 2010 г. показаны прямоугольниками. Цифрами I и II показаны хребты Яхтынын и Мэминэй соответственно.

ка — находятся примерно на продолжении друг друга и имеют практически одно и то же простирание. Такое необычное структурное сочетание не получило объяснения в опубликованных работах.

Основания для пересмотра и дополнения существующих представлений о распространении отдельных сейсморазрывов 2006 г. дало дешифрирование детальных космических снимков QuickBird (открытый доступ, pecypc GoogleEarth). Снимки не перекрывают всю эпицентральную зону, а лишь ее часть с юго-западным левосдвиговым сегментом. На снимках отчетливо видны свежие сейсморазрывы 2006 г., а в некоторых случаях по характеру подстановки трещин отрыва и валов сжатия можно понять направление горизонтальной компоненты движений по сейсморазрывам. Дешифрирование показало, что левосдвиговый сейсморазрыв, начинаясь там, где и показано на схеме в работе (Рогожин и др., 2007, 2009, 2010), затем поворачивает на северо-запад, протягивается по юго-восточному склону хребта Яхтынын, пересекает его водораздел и продолжается далее почти до северо-западного подножья

хребта. Общая длина сейсморазрыва составляет ~7.5 км. Кулисность трещин растяжения, там, где они были различимы на снимке, позволила предположить левосдвиговую кинематику разрыва на всем его протяжении (Ландер, Пинегина, 2010). Кроме того, в результате дешифрирования космических снимков была обнаружена довольно протяженная зона сейсморазрывов в районе смыкания хребтов Мэминэй и Яхтынын на их северо-западных склонах. Судя по конфигурации в плане линий сейсморазрывов в зависимости от рельефа, их кинематика взбросовая, а левый сдвиг образует с их зоной угол примерно в 50°.

Осенью 2010 г. авторам данной статьи удалось еще раз провести маршрутные обследования в эпицентральной зоне Олюторского землетрясения, в районе юго-западного и центрального сегментов системы сейсморазрывов, выполнить заверку результатов дешифрирования детальных космических снимков. Полученные данные позволили иначе, чем ранее (Рогожин и др., 2007, 2009, 2010), представить распространение разрывов 2006 г., соотношение разрывов с разной кинематикой движений.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ

Координаты точек, в которых выполнялись наблюдения, и в кратком виде результаты наблюдений представлены в таблице. Их описание проведем последовательно по районам центрального и юго-западного сегментов сейсморазрыва.

Район центрального сегмента – хр. Останцовый и северо-восточная часть хр. Мэминэй

Заключение о преимущественно правосдвиговой кинематике центрального сегмента сейсморазрыва было сделано ранее на основе наблюдений, выполненных в той части, где сейсморазрыв нарушает юго-восточное подножье хр. Останцовый (Пинегина, 2007; Пинегина, Константинова, 2006). В статьях Е.А. Рогожина с соавторами (Рогожин и др., 2007, 2009, 2010) показано, что центральный сегмент сейсморазрыва в виде единой линии, сохраняя доминирующую правосдвиговую компоненту, протягивается с юговосточного склона хребта Останцовый на северозападный склон хребта Мэминэй через седловину между этими хребтами (рис. 1, 2). Наши полевые наблюдения на северо-западным склоне хр. Мэминэй позволяют существенно скорректировать такие представления.

Сейсморазрыв начинается на юго-западе у подножья хребта Мэминей и протягивается примерно на 7 км в восток-северо-восточном направлении (Аз. ~ 60°) косо по склону в направлении перевала к юго-восточному склону хр. Останцовый, но не достигает его (рис. 2). Сейсморазрыв не соединяется с существенно правосдвиговым сейсморазрывом подножья хребта Останцовый и не находится точно на его продолжении. Таким образом, он представляет отдельный элемент системы сейсморазрывов 2006 г. Изучение сейсморазрыва в хребте Мэминэй показало, что основная компонента перемещений по нему взбросовая. Вертикальная амплитуда взброса достигает примерно 1.5 м в центральной части и уменьшается до 30-50 см вблизи окончаний сейсморазрыва (рис. 2-4). Сдвиговая компонента (правого знака) присутствует, но уступает вертикальной примерно в два раза (таблица). Тот же вывод следует из анализа кумулятивной деформации позднеплейстоцен-голоценовых долин водотоков, пересекаемых разрывом. Если вертикальная (взбросовая) компонента амплитудой до 3-5 м (включая смещение 2006 г.) выделяется в поверхности их террас уверенно, то заметного сдвига их тыловых швов нет. Таким образом, следует заключить, что распространение сейсморазрывов правосдвиговой кинематики, очевидно, ограничено юго-восточным подножьем хр. Останцовый.

Район юго-западного сегмента – северовосточная часть хр. Яхтынын и юго-западная часть хребта Мэминэй

Сейсморазрывы в этом районе образуют две отчетливые зоны. Обе хорошо проявлены на детальных космических снимках QuickBird и соответственно уверенно картируются (рис. 5).

Первая зона протягивается от северо-западного подножья хр. Яхтынын до приводораздельной части хр. Мэминэй (с его северо-западной стороны). Это узкая полоса взбросов, которую можно считать единым нарушением. Возможно, при подвижке здесь присутствовала очень небольшая правосторонняя компонента перемещений. Примечательно, что, как и в северо-восточной части хр. Мэминэй, взбросовый сейсморазрыв 2006 г. протягивается в целом косо по отношению к простиранию склонов хребтов.

Интересные данные были получены при заверке результатов дешифрирования на район левого сдвига. На юго-востоке сейсморазрыв начинается в долине правого притока р. Авьеваям, разделяющего хребты Мэминэй и Яхтынын. Примерно на протяжении 1.6-1.7 км сейсморазрыв протягивается вверх по склону хребта (рис. 5), имея азимут простирания ~100° и совпадая здесь с положением левого сдвига по схеме (Рогожин и др., 2007). В нескольких точках в этой части сейсморазрыва удалось довольно точно измерить величину левого сдвига, которая составила в среднем ~1.3 м (таблица), что согласуется с полученными ранее данными (Рогожин и др., 2007). С тем же простиранием разрыв протягивается далее на запад-северо-запад еще около километра, затем приобретает азимут простирания ~120°, и уже не меняя его, достигает водораздела хребта Яхтынын. С точки пересечения сейморазрывом водораздела (т. 501 в таблице и на рис. 5) разрыв хорошо виден на обоих склонах хребта (рис. 6, 7). Заканчивается разрыв на северо-западном подножье хр. Мэминэй, примерно там, где заканчиваются и взбросовые сейсморазрывы.

Отметим, что именно к данному участку сочленения сейсморазрывов с различной кинематикой движений приурочены три скальных оползня на водоразделе хребта Мэминэй (рис. 5, 8). Трещины и стенки отрыва как бы разбивают вершины хребта на осколки, в плане напоминающие битую тарелку. Подобных деформаций никто из исследователей не отмечал в других районах эпицентральной области Олюторского землетрясения.

Помимо описанных выше сейсморазрывов, непротяженные сейморазрывы с практически чистой взбросовой компонентой были обнаружены и детально обследованы по левому борту р. Авьеваям в 2006 г. (Пинегина, 2007) (рис. 2, 9). Из них более южный имеет азимут простирания от 20 до 35°, а более северный ~50°. На схеме Рогожина и др.

	Примечания	6			Пересечение русла ручья сейсмо- разрывом		Длина трещин отрыва~10 м, ши- рина ~0.4 - 0.6 м. Азимут раскрытия трещин 75-80°	Пересечение сейсморазрывом лед-никовой долины между хребтами Яхтынын и Мэминэй	Русло ручья разбито трещинами	СВ окончание взбросовой кули- сы сейсморазныва по девому	бортур. Вывенка	Сейсмогравитационный оползень		Кумулятивное смещение за голоцен ~4-5 м	Кумулятивное смещение за голоцен ~3-5 м (замер по смеще- нию русла ручья).	Пересечение сейсморазрывом бокового водораздела хр. Яхтынын	Сейсморазрыв с левым сдвигом	Сейсморазрыв с левым сдвигом. Кулисный ряд трещин растяжения, соответствующий левому сдвигу
юдений и краткое описание сейсморазрывов 2006 г.	Амплитуда горизонтальной подвижки, м / направле- ние сдвига	8	0.2-0.3 / правый	0.2-0.3 / правый	/ правый	/ правый	0.3-0.5 / правый	/ правый	/ правый				/ левый	1.2-1.3 / левый	1.1-1.2 / левый	/ левый	/ левый	/ левый
	Амплитуда вертикаль- ной подвиж- ки, м / под- нятое крыло	7	1.3-1.5 / HOB	1.3-1.5 / HOB	$\sim 1.0 \ / \ \text{FOB}$	0.2-0.3 / HOB	0.5 / IOB	/ ЮB	/ HOB	/ ЮВ	1							
	Азимут простира- ния трещин отрыва, °	9	110			140	120						270					
	Азимут простира- ния валов сжатия, °	Ś	70-40			60							300					
	Азимут про- стирания сейсмо- разрыва, °	4	70	70	60-70	70	75-80	60	50	60	0		110	100	100	110	110	115
	Долгота,°		166.48739	166.48894	166.4922	166.50386	166.50814	166.38095	166.51378	166.53680		166.36264	166.37744	166.36449	166.36066	166.34743	166.32487	166.31864
	Широта,°	2	60.76092	60.76097	60.76109	60.76345	60.76405	60.69120	60.76485	60.77072		60.68190	60.66491	60.66589	60.66627	60.66744	60.6777	60.67625
Точки набл	№ точки наблю- дений	1	468 (001)	469	470	472 (004)	473 (005)	900	474	476		A5	477	478 (012)	480 (013)	495	497	499 (017)

НОВЫЕ ДАННЫЕ О СЕЙСМОРАЗРЫВЕ

ВЕСТНИК КРАУНЦ. НАУКИ О ЗЕМЛЕ. 2010. № 2. ВЫПУСК № 16

Окончание	
Таблица.	

6	Сейсморазрыв в левом борту ручья левого притока р. Вывенка в его при- водораздельной части	Пересечение сейсморазрывом водо- раздела между р. Вывенка и р. Авье- ваям. Ширина зоны нарушений (валы, трешины) около 10 м, длина трешин до 10 м, валов – до 5 м, азимут раскрытия трешин ~220°. Немного приподнято ЮЗ крыло, падение плоскости очень крутое. В СВ крыле в 10-15 м от левого сдвига фрагмент правосдвиговой системы трешин растяжения и валов сжатия. Ширина ряда 70-80 см, азимут простирания ряда 10°, азимут трещин 60°, азимут валиков 325-330°	Валы высотой до 10-15 см, попереч- ная зона видимой деформации шириной до 1 м. Разрыв в т.н. про- слеживается небольшими отрезками (прерывистая линия), ширина трещин до первых десятков см, протяженность 1.5 -5 м		Окончание взбросового сейсмораз- рыва 2006 в месте его смыкания с активным разломом. Сейсморазрыв под старым разломным уступом на седловине	Пересечение сейсморазрывом ручья	Взброс по левому борту р. Вывенка	90 м к ЮВ от т.н. 508. СЗ окончание левого сдвига. Деформации земной поверхности незначительные, про- слеживаются на небольших отрезках
×	/ левый	/ левый	0.1-0.3 / правый	/ правый	/ правый	0.3 / правый	/ правый	/ левый
7			0.2-0.3 / KOB	/ HOB	/ ЮB	0.6 / HOB	0.6-0.7 / IOB	
9		270-280	260-280	300-320				
S		220		0-10				
4	110	120	60	60	60	60	60	130
3	166.31171	166.3099	166.45625	166.44556	166.44275	166.43974	166.26002	166.26077
2	60.67773	60.67582	60.75116	60.74817	60.74728	60.74621	60.69065	60.68994
1	500 (018)	501 (019)	502 (020)	504 (021)	505 (022)	506 (023)	508 (025)	508-a

ПИНЕГИНА, КОЖУРИН

ВЕСТНИК КРАУНЦ. НАУКИ О ЗЕМЛЕ. 2010. № 2. ВЫПУСК № 16

НОВЫЕ ДАННЫЕ О СЕЙСМОРАЗРЫВЕ

Рис. 2. Сегменты сейсморазрыва с различной кинематикой в долине р. Вывенка и долине р. Авьеваям: 1 – взбросы; 2 – взбросы с небольшой правосдвиговой компонентой; 3 – правые сдвиги; 4 – точки наблюдений (т.н.) 2010 г. (таблица); сейсморазрывы в долине р. Авьеваям детально описаны в (Пинегина, 2007); 5 – положение правосдвиговых сейсморазрывов по схеме Рогожина и др. (2007, 2009, 2010). В основе рисунка – фрагмент космического снимка LandYard №DZB1216-500395L007001, съемки 1980 г.

Рис. 3. Сейсморазрыв с преобладающей вертикальной компонентой (взброс ЮВ крыла) по левому борту р. Вывенка. Фото из т.н. 469 (рис. 2, таблица), вид на северо-восток.

ВЕСТНИК КРАУНЦ. НАУКИ О ЗЕМЛЕ. 2010. № 2. ВЫПУСК № 16

ПИНЕГИНА, КОЖУРИН

Рис. 4. Вертикальное (0.6 м) и горизонтальное (0.3 м) смещения, измеренные по водопаду, образовавшемуся в результате пересечения ручья сейсморазрывом 2006 г. Фото сделано в т.н. 506 (таблица), в ~200 м восточнее т.н. 022 (рис. 2).

Рис. 5. Сегменты сейсморазрывов 2006 г. в районе хребтов Яхтынын и Мэминэй, отдешифрированные по снимкам QuickBird от 12.06.06 с последующей полевой заверкой на ключевых участках: 1 – взбросы с небольшой правосдвиговой компонентой; 2 – левые сдвиги; 3 – т.н. 2010 г. (таблица); 4 – сейсмогравитационные оползни; 5 – положение и кинематика сейсморазрывов по схеме Рогожина и др. (2007, 2009, 2010): a – левосдвиговый разрыв, δ – взброс с левосдвиговой компонентой, c – правый сдвиг. В основе рисунка – фрагмент космического снимка LandYard №DZB1216-500395L007001, съемки 1980 г.

НОВЫЕ ДАННЫЕ О СЕЙСМОРАЗРЫВЕ

Рис. 6. Фото левого сдвига, сделанное в направлении на северо-запад из т.н. 501 (рис. 5): a — общий вид, δ — область, оконтуренная белым прямоугольником на рис. 6a с увеличением; 1 — плоскость разрыва с левосдвиговым смещением; 2 — трасса сейсморазрыва.

(2007, 2009, 2010) более южный из этих разрывов не показан, а более северный показан как чистый правый сдвиг. Отметим, что наличие практически взбросовых разрывов вполне логично согласуется с уточненной схемой разрывных нарушений. Южный взбросовый сегмент по левому борту р. Авьеваям кинематически может быть сопряжен с левым сдвигом.

Рис. 7. Фото левого сдвига: a - в направлении на юго-восток из т.н. 501 (рис. 5); δ – пересечение левым сдвигом водораздела между долинами рек Авьеваям и Вывенка (т.н. 501). Белыми стрелками показана трасса сейсморазрыва.

выводы

Дешифрирование космических снимков и полевые наблюдения позволили дополнить и существенно скорректировать картину распространения сейсморазрывов 2006 г. на их юго-западном и центральном участках (рис. 9).

На центральном участке распространение

Рис. 8. Фото одного из крупных сейсмогравитационных оползней в восточной части хребта Яхтынын, т.н. А5 (рис. 5).

Рис. 9. Уточненная схема распространения и кинематики сейсморазрывов 2006 г. на югозападном и центральном участках эпицентральной зоны. Сейсморазрывы: 1 – правосдвиговые; 2 – левосдвиговые; 3 – взбросовые; 4 – взбросовые с небольшой правосдвиговой компонентой.

сейсморазрывов с доминирующей правосторонней компонентой движений ограничено юго-восточным подножьем хр. Останцовый. Находящийся примерно на их простирании, но не соединяющийся с ними сейсморазрыв на северо-западном склоне хр. Мэминэй представляет собой взброс (относительно поднято юго-восточное крыло) с подчиненной правосдвиговой компонентой движений. Значительные изменения приходится внести в конфигурацию сейсморазрывов на юго-западном участке. Во-первых, в их систему необходимо включить взбросовый сейсморазрыв на обращенных к р. Вывенка склонах хребтов Яхтынын и Мэминэй. Во-вторых, левосдвиговый сейсморазрыв там протягивается не вдоль хребта Яхтынын, а пересекает его, имея северо-западное простирание и соединяясь на северо-западе со взбросовым сейсморазрывом в подножье хребта. При этом левосдвиговый разрыв является крайним юго-западным ограничением эпицентральной зоны Олюторского землетрясения 2006 г: к юго-западу от него сейсморазрывы в долинах рек Авьеваям и Вывенка не обнаружены.

Представленные новые данные о распространении и кинематике сейсморазрывов позволяют разрешить ряд выявленных ранее противоречий между геологическими и сейсмологическими данными (Ландер, Пинегина, 2010). Так, по сейсмологическим данным, центр тяжести модуля подвижки в источнике Олюторского землетрясения располагался в центральном сегменте, здесь же была зафиксирована и максимальная плотность афтершоков. Эти данные с большой вероятностью указывали на то, что в центральном сегменте была область максимальных подвижек. Можно было бы ожидать, что и общий тензор сейсмического момента должен отражать в первую очередь движения в центральном сегменте. Однако в оценках тензора преобладала взбросовая компонента, а по геологическим данным здесь на поверхности наблюдались чистые правые сдвиги. Наличие же, по новым данным, довольно протяженного взбросового сейсморазрыва по восточному борту р. Вывенка, вероятно, объясняет преобладание взбросовой компоненты в оценках общего тензора сейсмического момента.

В районе левосдвигового сейсморазрыва по (Global...), произошел один афтершок с Mw = 5.2 (29(30) апреля 2006 г., координаты эпицентра 60.65° с.ш., 166.17° в.д.), механизм которого можно интерпретировать как левый сдвиг (Ландер, Пинегина, 2010). Простирание левосдвиговой нодальной плоскости механизма афтершока (294° по каталогу Global CMT) практически совпадает с простиранием выявленного нами левостороннего сейсморазрыва (300°), а магнитуда лучше соответствует его протяженности, в два раза меньшей, чем предполагалось ранее.

Работа выполнена при финансовой поддержке гранта РФФИ № 06-05-64025а

Список литературы

- Пинегина Т.К. Сейсмические деформации в эпицентральной зоне Олюторского землетрясения // Олюторское землетрясение (20 (21) апреля 2006 г., Корякское нагорье). Первые результаты исследований / Отв. ред. В.Н. Чебров. Петропавловск-Камчатский: ГС РАН, 2007. С. 126-169 (http://www.kscnet.ru/ ivs/bibl/sotrudn/stpineg/1.pdf).
- Пинегина Т.К., Константинова Т.Г. Макросейсмическое обследование последствий Олюторского землетрясения 21 апреля 2006 года // Вестник КРАУНЦ. Науки о Земле. 2006. № 1. Вып. 7. С. 169-173 (http://www.kscnet.ru/ kraesc/index.html).
- Рогожин Е.А., Овсюченко А.Н., Мараханов А. В. и др. Олюторское землетрясение в Корякии 20 (21) апреля 2006 г.: результаты геологического и макросейсмического изучения эпицентральной области // Олюторское землетрясение (20 (21) апреля 2006 г., Корякское нагорье). Первые результаты исследований / Отв. ред. В.Н. Чебров. Петропавловск-Камчатский: ГС РАН, 2007. С. 170-206 (http://www.kscnet.ru/ ivs/bibl/sotrudn/stpineg/3.pdf).
- Рогожин Е.А., Овсюченко А.Н., Мараханов А.В., Новиков С.С. Тектоническая позиция и геологические проявления Олюторского землетрясения 2006 г. в Корякии // Геотектоника. 2009. № 6. С. 3–23.
- Рогожин Е.А., Овсюченко А.Н., Мараханов А.В., Новиков С.С. Результаты геологического изучения эпицентральной области Олюторского землетрясения 20 (21) апреля 2006 г. // Вулканология и сейсмология. 2010. № 2. С. 7–16.
- Ландер А.В., Пинегина Т.К. Парадоксы очага Олюторского землетрясения 2006 г. – глубинная структура и динамика // Проблемы комплексного геофизического мониторинга Дальнего Востока России. Тр. Второй региональной научно-технической конференции, Петропавловск-Камчатский. 11-17 октября 2009 г. / Отв. Ред. В.Н. Чебров. Петропавловск-Камчатский: ГС РАН, 2010. С. 131-135 (http:// www.emsd.iks.ru/konf091011/lib.php).
- Global CMT catalog (http://www.globalcmt.org/ CMTsearch.html)

ПИНЕГИНА, КОЖУРИН

A NEW DATA ON OLIYTORSKIY EARTHQUAKE FAULT (MW 7.6, APRIL 21, 2006, KORIAKIA, RUSSIA)

T.K. Pinegina¹, A.I. Kozhurin²

¹Institute of volcanology and seismology FEB RAS, Petropavlovsk-Kamchatskiy, 683006 ²Geological Institute RAS, Москва, 119017;

The paper describes new data on location and kinematics of the Olyutorsky 2006 earthquake faults. Dominating among them are reverse and thrust faults with minor right-lateral component of movements. These faults break the north-west slopes of the Yakhtynyn Ridge and the Meminey Ridge, which make the south-west border the Vyvenka depression. In the south-western termination of reverse faults, the north-west striking left-lateral earthquake fault cuts the Yakhtynyn Ridge obliquely and constitute dynamically and kinematically linked structural combination with them. Earthquakes faults with dominating right-lateral component of movements are much less widespread and stretch south-east of the reverse faults system.

Keywords: Oliytorskiy earthquake, earthquake faults position, faults kinematics.