ТЕПЛОВОЕ ПОЛЕ ГЕОЛОГИЧЕСКИХ СТРУКТУР БЕЛАРУСИ

В.И. Зуй, М.С. Жук

Институт геохимии и геофизики НАН Беларуси ул. Купревича, 7, 220141, Минск, Беларусь E-mail: zui@igig.org.by

Описано тепловое поле геологических структур Беларуси. Рассмотрено распределение температуры на глубине 100 м. Выполнены новые определения плотности теплового потока. В отдельных случаях пересмотрены его значения, опубликованные ранее, в которых не учитывались приповерхностные искажения геотермического градиента. Изменчивость плотности теплового потока по разрезу отражена его несколькими интервальными значениями для большинства изученных скважин. Рассмотрена связь между распространением гранитоидов и бластомилонитов в верхней части кристаллического фундамента и наблюдаемой плотностью теплового потока. Показана связь радиогенной теплогенерации с плотностью теплового потока. Кратко изложены факторы, искажающие наблюдаемую плотность теплового потока в верхних интервалах разреза платформенного чехла, превалирующее значение при этом имеет фильтрация подземных вод, прежде всего в зоне активного водообмена.

введение

Территория Беларуси в тектоническом плане представляет собой зону сочленения отличающихся по эволюции и глубинному строению крупных литосферных блоков - Фенноскандии, Сарматии и Волго-Уралии. Этот регион характеризуется многообразием структурных комплексов платформенного чехла и фундамента, что находит отражение в особенностях теплового поля. Земная кора Беларуси имеет блоковое строение. Наличие разновозрастных интрузий основного состава, пород, метаморфизованных в условиях гранулитовой фации, архейских и раннепротерозойских габброидов, интенсивная гранитизация и метаморфизм пород амфиболитовой фации являются особенностями строения кристаллического фундамента региона.

Нестационарное тепловое поле, существующее в массиве горных пород с учетом конвективной составляющей, в общем случае описывается трехмерным дифференциальным уравнением в частных производных (Зуй, 1984):

$$\begin{split} & \frac{\partial}{\partial x} \left(\lambda_x \frac{\partial T}{\partial x} \right) + \frac{\partial}{\partial y} \left(\lambda_y \frac{\partial T}{\partial y} \right) + \frac{\partial}{\partial z} \left(\lambda_z \frac{\partial T}{\partial z} \right) \pm \mathbf{c}_x \mathbf{p}_x \frac{\mathbf{k}}{\mu} \\ & \left(\frac{\partial P}{\partial x} \frac{\partial T}{\partial x} + \frac{\partial P}{\partial y} \frac{\partial T}{\partial y} + \frac{\partial P}{\partial z} \frac{\partial T}{\partial z} \right) \pm \mathbf{A}(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{t}) = \mathbf{c} \mathbf{p} \frac{\partial T}{\partial \mathbf{t}}, \end{split}$$

где л_x, л_y и л_z – составляющие коэффициента теплопроводности вдоль координатных осей х, у и z; T – температура; с_жс_ж – объемная теплоемкость жидкости, заполняющей поровое пространство в горной породе; сс – коэффициент объемной теплоемкости пористого пласта, насыщенного жидкостью; k – проницаемость горной породы (в общем случае может также быть функцией координат); Р – давление; А – источники либо стоки тепла, в частности это может быть радиогенная теплогенерация; м – динамическая вязкость пластовой жидкости, например нефти, зависящая от температуры. Для воды принимается м = 1. Заметим, что в уравнении опущен член, описывающий передачу тепла радиационным путем, он требует учета лишь при высоких температурах, обычно более 500 °С. В приведенном уравнении вектор скорости фильтрации

$$\bar{\mathbf{V}} = \frac{\mathbf{k}}{\mu} \left(\frac{\partial \mathbf{P}}{\partial \mathbf{x}} \frac{\partial \mathbf{T}}{\partial \mathbf{x}} + \frac{\partial \mathbf{P}}{\partial \mathbf{y}} \frac{\partial \mathbf{T}}{\partial \mathbf{y}} + \frac{\partial \mathbf{P}}{\partial z} \frac{\partial \mathbf{T}}{\partial z} \right),$$

 \bar{V}^- вектор скорости фильтрации, часто записываемый в виде $\bar{V} = V_x i + \bar{V}_y i + \bar{V}_z k$. Здесь i, j, k – координатные орты осей 0х, 0у, 0z, a V_x , V_y , V_z – составляющие вектора \bar{V} относительно тех же осей. В подавляющем большинстве случаев задачи геотермии сводятся к рассмотрению стационарных тепловых полей, за исключением приповерхностных горизонтов, где явно ощутимо влияние распространения с земной поверхности вглубь годичных либо суточных колебаний температуры. Конвективным переносом тепла при изучении теплового потока в практических случаях пренебрегают. При этом правая часть в приведенном уравнении ср $\frac{\partial \Gamma}{\partial t}$ и конвективный член

$${}_{\pi}\rho_{\pi}\frac{k}{\mu}\left(\frac{\partial P}{\partial x}\frac{\partial T}{\partial x} + \frac{\partial P}{\partial y}\frac{\partial T}{\partial y} + \frac{\partial P}{\partial z}\frac{\partial T}{\partial z}\right)$$

обращаются в нуль. Тогда в стационарном тепловом поле вектор плотности теплового потока, являющегося общепризнанной интегральной характеристикой теплового режима земных недр, остается только функцией координат:

$$\overline{q}(\mathbf{x},\mathbf{y},\mathbf{z}) = \left[-\lambda_{\mathbf{x}} \frac{\partial \mathbf{T}}{\partial \mathbf{x}} + \lambda_{\mathbf{y}} \frac{\partial \mathbf{T}}{\partial \mathbf{y}} + \lambda_{\mathbf{z}} \frac{\partial \mathbf{T}}{\partial \mathbf{z}} \right],$$

где T, л(x, y, z) – температура и коэффициент теплопроводности горных пород соответственно (Зуй, 1984).

Все три компоненты вектора теплового потока могут быть определены в специальных случаях, например при моделировании рефракции теплового потока, имеющей, в частности, место вблизи соляных диапиров и куполов. В подавляющем же большинстве изученных случаев преобладали вертикальные скважины. При этом было возможным изучение только вертикальной составляющей q, описываемой простым уравнением $q_z = q = -\pi_x (dT/dz) = -\pi_z gradT$. Ниже при описании плотности теплового потока и коэффициента теплопроводности будем понимать их значения в вертикальном направлении.

Интервальные значения отражают информацию о процессах, протекающих в глубоких горизонтах платформенного чехла и земной коры, с одной стороны, а также несут информацию о влиянии так называемых приповерхностных факторах в верхней части осадочных отложений - с другой. Параметры теплового поля тесно связаны с глубинными процессами, степенью раздробленности земной коры, ее блоковым строением, активностью глубинных разломов и зонами повышенной проницаемости горных пород, а также со степенью закрытости водоносных горизонтов, наличием перетоков между ними, активностью процессов фильтрации подземных флюидов в целом, глубиной проникновения годичных и вековых вариаций температуры земной поверхности и т. п. В последние годы изучение теплового поля платформенного чехла стимулируется интересом к разведке и практическому использованию возобновляемых ресурсов природного тепла – геотермальной энергии. Этими причинами вызвана необходимость детализация структуры и параметров теплового поля, в частности распределения температуры и плотности теплового потока в платформенном чехле Беларуси.

Наряду с распределением температуры в земных недрах, тепловыми свойствами горных пород, плотность теплового потока относится к важнейшим геофизическим характеристикам при изучении глубинного строения земной коры. В силу низкой теплопроводности и температуропроводности горных пород, их объемной теплоемкости геотермическое поле на протяжении тысячелетий хранит информацию о зонах активизации блоков земной коры, в том числе и разделяющих их разломов, а сам тепловой поток является наиболее информативным параметром. В частности, он имеет выраженную связь с зонами нефтенакопления.

В последние годы в Беларуси выполнен большой объем работ по регистрации термограмм скважин в пределах основных геологических структур, детализированы и построены новые карты распределения температуры и плотности теплового потока. В результате были четче оконтурены ранее известные и выявлены новые геотермические аномалии (Урбан, Беляшов, 2003; Зуй, 2004; Урбан, Цыбуля, 2004; Zhuk et al., 2004; Zui, 2004; Зуй, 2005). Это позволило дать их более детальную интерпретацию и сопоставить полученные геотермические данные со строением геологических структур Беларуси.

ГЕОТЕРМИЧЕСКАЯ ИЗУЧЕННОСТЬ

Еще первые данные по распределению температуры в платформенном чехле (Протасеня, 1962, ;; Богомолов, Протасеня, 1963) и сведения о плотности теплового потока (Протасеня, 1962.; Богомолов, 1970; Богомолов и др., 1970, 1972) показали, что тепловое поле изучаемого региона имеет значительную неоднородность. Однако малое количество данных и их неравномерное распределение по площади не позволяли в шестидесятых и начале семидесятых годов прошлого столетия составить детальные геотермические карты региона и тем более четко проследить геотермические аномалии в пределах всей страны. В последующие годы накапливались данные по геотермической изученности практически всех геологических структур Беларуси: Белорусской антеклизы (Цыбуля, Жук, 1981, 1985; Жук, 1989,; Зуй и др., 1991; Жук, Капора, 1993), Оршанской впадины (Bogomolov et al., 1982; Цыбуля, Урбан, 1984; Зуй и др., 1991), белорусской части Подлясско-Брестской впадины (Цыбуля и др., 1988; Жук и др., 1989), Полесской седловины и Микашевичско-Житковичского выступа (Цыбуля и др., 1986; Зуй и др., 1993), Жлобинской седловины и западного склона Воронежской антеклизы (Зуй и др., 1991; Урбан, Беляшов, 2003). Наибольшее количество определений плотности теплового потока в этот период было выполнено в пределах Припятского прогиба (Атрощенко, 1975; Bogomolov et al., 1982; Цыбуля и др., 1984, 1985; Гордиенко, Завгородняя, 1985; Ходырева, 1987; Цыбуля, Левашкевич, 1990; Зуй и др., 1991, 1993; Жук и др., 1993; Zhuk et al., 2004). В результате проведенных исследований геотермическая изученность территории Беларуси значительно улучшилась как за счет новых данных, так и благодаря детальной обработке накопленных ранее геотермических измерений, выполненных в поисково-разведочных и гидрогеологических скважинах.

В ряде случаев были пересмотрены ранее приведенные в каталоге теплового потока его значения (Зуй и др., 1985, 1993) по отдельным скважинам. Начиная с середины 80-х годов прошлого столетия во многих скважинах было замечено, что в верхней части геологического разреза геотермический градиент плохо контролируется изменчивостью литологического состава напластования горных пород (Зуй и др., 1985). Это приводило к вертикальной изменчивости не только геотермического градиента, но и плотности теплового потока. В большинстве случаев происходит увеличение интервальных значений плотности теплового потока с ростом глубины. Поэтому в последующих публикациях для более полной геотермической характеристики начали приводить значения теплового потока для нескольких изученных интервалов глубины. Характерную же его величину для всей седловин, Воронежской антеклизы их глубина редко превышает 300-400 м. Наиболее плотная сеть изученных скважин находится в Припятском прогибе. В пределах Прибугской структуры на границе с Польшей геотермические измерения выполнены в десятках скважин, сосредоточенных на небольшой Прибугской пло-

скважины определяли для нижних интервалов разреза, а при немонотонном изменении его с глубиной принимали среднее арифметическое значение. Наиболее надежные значения соответствуют глубоким скважинам, где влияние приповерхностных факторов, таких как фильтрация подземных вод, вариации палеоклимата, невелико. Однако большинство скважин глубиной 2-4 км сосредоточено в юго-восточной части Беларуси - Припятском прогибе - и только немногие из них глубиной более 1000 м были изучены в Оршанской и Подлясско-Брестской впадинах.

Геотермическая изученность территории Беларуси, распределение скважин и их глубина представлены на рис. 1, где показано местоположение скважин, в которых выполнены геотермические измерения, а длины

вертикальных линий представляют глубины, достигнутые скважинным термометром при полевых измерениях. На схему вынесены границы основных геологических структур. Границы Припятского прогиба отмечены положением Северо-, Южно-Припятского разломов и разломами, ограничивающими Микашевичско-Житковичский выступ фундамента.

Изученные скважины расположены относительно равномерно в пределах территории Беларуси. Однако в подавляющем большинстве случаев в пределах Оршанской впадины, Белорусской антеклизы, Жлобинской и Полесской

Рис. 1. Схема расположения и глубин изученных термическим методом скважин. 1 – границы положительных структур – Белорусской и Воронежской антеклиз; 2 – границы отрицательных структур – Подлясско-Брестской и Оршанской впадин. Вертикальный масштаб приведен в правом нижнем углу схемы, а длины вертикальных линий в местах положения скважин изображают достигнутую термометром глубину. БА – Белорусская антеклиза; БЛС – Брагинско-Лоевская седловина; БПВ – Бобруйский погребенный выступ; БС – Балтийская синеклиза; ВА – Воронежская антеклиза; ЖС – Жлобинская седловина; ЛРГ – Луковско-Ратновский горст; ЛС – Латвийская седловина; МЖВ – Микашевичско-Житковичский выступ; МС – Московская синеклиза; ОВ – Оршанская впадина; ЧСЗ – Червенский структурный залив; ПБВ – Подлясско-Брестская впадина; ПП – Припятский прогиб; ПС – Полесская седловина; УЩ – Украинский щит.

щади (около 4×9 км), на остальной же территории Подлясско-Брестской впадины лишь немногие скважины были доступны для измерений. На схеме также показано положение нескольких изученных авторами скважин на территории Литвы, Латвии и России.

РАСПРЕДЕЛЕНИЕ ТЕМПЕРАТУРЫ НА ГЛУБИНЕ 100 М

Наибольшее количество данных о распределении температуры можно получить по наиболее надежным термограммам (около 415) для глубины 100 м, зарегистрированным в скважинах Беларуси. Для построения карты распределения температуры на этой глубине использованы результаты собственных измерений температуры в скважинах, достигших теплового равновесия после завершения бурения; только единичные наиболее надежные производственные термограммы для районов, где отсутствуют другие измерения, дополнили использованный массив данных (Крапивенская в Смоленской области, Лаздияй в Литве, Дуниловичи в северной части Белорусской антеклизы). Остальные производственные термограммы по причине малой выстойки скважин до начала термометрических измерений и их невысокого качества не использовались. Они показывают, как правило, перегрев скважины на глубине 100 м по отношению к стационарной температуре окружающих горных пород.

Карта распределения температуры на глубине 100 м представлена на рис. 2. Для проведения изотерм был использован интервал 0,5 °С. Его величина вполне обоснована (имеется в виду, что абсолютная погрешность использованных скважинных электротермометров составляла порядка ±0,03 °С). Положение этих скважин на карте показано кружками. Слабо изученными остаются Балтийская и Московская синеклизы, а также Латвийская седловина, прилегающие к границам Беларуси. Отсутствуют данные по смежным территориям – Днепровско-Донецкой впадине, Украинскому щиту, Луковско-Ратновскому горсту в Украине, польской части Подлясско-Брестской впадины и Белорусской антеклизы.

Изотермы на карте за пределами Беларуси проведены путем экстраполяции, и их конфигурация требует уточнения. Температурное поле на глубине 100 м имеет контрастный вид. Здесь отчетливо прослеживаются региональные и локальные аномалии, в пределах которых температура изменяется в диапазоне 7,0-11,5 °С, разница между крайними значениями достигает 4,5 °С. Температура более 8 °С характерна для северной зоны Припятского прогиба и Подлясско-Брестской впадины, где существуют положительные геотермические аномалии, а также для западного склона Воронежской антеклизы в пределах Беларуси. На конфигурацию изотерм в северной зоне Припятского прогиба накладывает отпечаток малое количество надежных термограмм, в верхних частях которых имелись бы достоверные данные по температуре на глубине 100 м. Главная ось этой аномалии ориентирована параллельно Северо-Припятскому бортовому разлому.

В Оршанской впадине выделена Восточно-Оршанская аномалия низких значений температуры 6,5–7,5 °С (Зуй, 2005) в треугольнике между городами Орша – Смоленск – Чериков. Она включает почти всю Могилевскую мульду, а ее продолжение в России проведено неуверенно из-за нехватки геотермических данных и требует последующего уточнения.

Западно-Оршанская аномалия повышенных значений температуры (от 8 °С в центральной части до 10,0-11,5 °C в южной части), ориентированная в меридиональном направлении, прослеживается от северной зоны Припятского прогиба через западную часть Оршанской впадины и восточный склон Белорусской антеклизы. До опубликования работы (Zui, 2004) она была недостаточно изучена и названа Центрально-Оршанской аномалией, однако последующие дополнительные данные показали, что она прослеживается по линии Речица - Светлогорск - Березино - Борисов - Лепель - Невель. В северной части она разветвляется от г. Езерище через Витебск и достигает широты Орши. Северное окончание аномалии в районе городов Езерище и Невель выделяется неуверенно, поскольку на российской территории изучена лишь одна скважина (санаторий «Голубые озера»). Аналогичная ситуация имеет место и в Беларуси.

В южной части этой полосы можно проследить локальную Белыничско-Чечевичско-Речицкую аномалию повышенной температуры (более 8,5 °C), вытянутую в меридиональном направлении. Она выделяется по 8 скважинам и на севере по изолинии 8 °C достигает широты Борисова. Эта аномалия отделяет восточный склон Белорусской антеклизы и Червенский структурный залив от основной части Оршанской впадины.

Западная часть Чашникско-Полоцкой аномалии пониженных значений температуры на долготе Полоцка соединяется с единой аномалией пониженной температуры на восточном склоне Белорусской антеклизы и в Червенском структурном заливе Оршанской впадины. В северном направлении она продолжается в пределах Латвийской седловины.

Изотерма 9,5 °С, окаймляющая восточную часть Подлясско-Брестской впадины, прослеживается через Полесскую седловину на территории Украины. Брестская аномалия изолинией 9 °С соединяется через эту седловину с аномалией повышенной температуры в Припятском прогибе, далее она огибает Белыничско-Речицкую аномалию, охватывает западный склон Воронежской антеклизы и продолжается в пределах России. Еще одна – Гродненская аномалия повышенной температуры (более 9 °С) – вытянута в меридиональном направлении и достигает на севере белорусско-литовской границы.

Молодечненско-Нарочанская аномалия температуры более 8 °С ориентирована в меридиональном направлении. Она достигает на севере места сочленения границ Беларуси, Литвы и Латвии и разделяет аномалию пониженных значений температуры в Белорусской антеклизе на две части – аномалию на восточном склоне антеклизы и аномалию в центральной части антеклизы. Наконец, Ляховичско-Ельнинская аномалия повышенных значений (более 8 °С) также имеет меридиональное простирание.

Рис. 2. Схема распределения температуры в пределах Беларуси и прилегающих структур на глубине 100 м. 1–2 – суперрегиональные и региональные разломы поверхности фундамента; 3 – изотермы, °C; 4 – изученные скважины; 5 – населенные пункты; 6 – слабо изученные зарубежные территории, где отсутствуют надежные термограммы; 7 – границы положительных структур – Белорусской и Воронежской антеклиз по изогипсе -500 м; 8 – границы Оршанской впадины по изогипсе -700 м.

тепловой поток

В течение 2000-2006 гг. выполнены новые определения плотности теплового потока, представленные в таблице, а также пересмотренные в отдельных случаях ранее опубликованные рядом исследователей данные. Материалы представлены в формате, соответствующем требованиям Международной комиссии по тепловому потоку (Jessop et al., 1976). При этом опущены колонки, в которых отражены альтитуды, количество скважин в кусте, количество образцов, изученных по тепловым свойствам, год публикации, значения радиогенной теплогенерации. В таблицу включены лишь наиболее представительные из изученных интервалов глубины.

Приводимые ранее высокие значения плотности теплового потока (80-109 мВт/м²) в Припятском прогибе (Атрощенко, 1975), связанные с его фокусировкой в соляных куполах, пересмотрены в работе (Zhuk et al., 2004). Такое искажение для ядра купола по отношению к фоновому значению плотности ТП ниже купола для скважин Первомайская 1 и Речицкая 17 достигает 1,4 по (Цыбуля, Левашкевич, 1990). Значение потока ниже купола составляет для Первомайской площади 75 мВт/м². В других случаях опубликованные значения ТП были занижены из-за неучета влияния фильтрации вод. Такие определения были также пересмотрены в настоящей работе. Учтены определения потока польских (Майорович, Плева, 1982; Safanda et al., 2004), украинских (Бурьянов и др.,

			Коорлинаты			Vor. no	The second second			Изучено	
	Koz	0.00	Illenson	TTomore	Интервал	OTCHETOP	темпера-	Теплопро-	Тепловой	интервалов	~
Ne	качества	Скважина	широта, N	долгота, Е	плубины,	темпера-	туры.	водность,	notor,	и диапазон	Ссылка*
	0.0000-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-		1N (mag	E .	м	туры	мК/м	Вт/мК	мВт/м"	изменения	
DV001		There are a second s	(1 page	, MHH)		71			24	потока	
BYOUT	EDADUC	Булавки	55, 35,1	28, 40.7	207 216	/1	12.2	0.0	34	4 (15-34)	
P	EDADHC	4111.4	55, 35,1 55, 25,1	28, 40.7	207-210	5	12.2	1.2	28	1.	
D DV002	EDADHC	20000000	55 22 9	20, 40.7	201-201	42	13,0	1.0	34	2 (15 20)	
A 1002	EDADUC	Заскорки	55, 23, 8	20, 27.2	75 00	45	12.7	16	20	3 (13-30)	
B	EBABHC	2111	55 23.8	28, 37.2	210_220	3	13.0	23	30	1	
BV003	LDADITC	Hanout	54 54 9	26, 37.2	210-220	43	15.0	4.5	43	7 (25-43)	
Δ	FRAZHC	107ne	54, 54.9	26, 42.7	350-390	5	11.5	37	43	1 (25-45)	
B	FRAZHC	107nc	54 54 9	26 42 7	390-420	4	9.0	4.8	43		
BY004	LIMITIC	Нарочь	54 54 6	26. 43 5	570 140	50 m	210	1.0	42	14 (14-42)	
A	FBAZHC	4	54 54 6	26, 43 5	320-360		14.2	2.9	41	1	
B	EBAZHC	4	54, 54,6	26. 43.5	360-517		9.2	4.6	42	1	
C	EBAZHC	4	54 54 6	26, 43.5	360-400		12.2	2.8	34	i	3
BY005		Нарочь	54, 54,3	26, 47.9		138			50	12 (32-52)	
A	EBAZHC	101ne	54, 54,3	26, 47,9	390-515	26	15.6	2.8	44	1	
в	EBAZHC	101пс	54, 54, 3	26, 47.9	525-540	5	16.0	3.1	50	1	
C	EBAZHC	101nc	54, 54,3	26, 47,9	205-285	17	29.4	1.78	52	ĩ	3
BY006		Нарочь	54, 54,3	26, 47.8	22, 0. II	29			42	4 (30-42)	
A	EBAZHC	102пс	54, 54.3	26, 47.8	150-200	6	15.4	2.7	42	1	
В	EBAZHC	102пс	54, 54.3	26, 47.8	200-290	10	28.2	1.5	42	1	
BY007		Нарочь	54, 54.2	26, 40.7		82			41	7 (22-41)	
Α	EBAZHC	1 MB	54, 54.2	26, 40.7	315-360	10	12.4	3.0	37	1	
В	EBAZHC	1 MB	54, 54.2	26, 40,7	360-410	11	8.6	4.8	41	1	
BY008	k.	Вилейка	54, 29.1	26, 52.9	Labora de Sciencia	999	and the second s	2. 1 h i i i i i	43	5 (40-45)	
A	EBABHC	15	54, 29.1	26, 52.9	320-360	999	16.3	2.6	42	1	
В	EBABHC	15	54, 29.1	26, 52.9	418-438	999	29.0	1.5	44	1	
BY009	l.	Плещеницы	54, 25.4	27, 46.9		88			45	5 (21-45)	
Α	EBABHC	1лг	54, 25.4	27, 46.9	330-420	19	14.0	1.9	27	1	
В	EBABHC	1лг	54, 25.4	27, 46.9	420-440	6	18.0	2.5	45	1	
BY010	1	Самоседовка	54, 25.3	29, 01.2		54			34	2 (31-36)	
A	EBABHC	Збтл	54, 25.3	29, 01.2	229-246	4	17.2	2.1	36	1	
В	EBABHC	36тл	54, 25.3	29, 01.2	256-263	3	15.7	2,0	31	1	
BY011	EBAGHC	Молодечно 1	54, 18.1	26, 50.6	360-375	3	11.0	4.0	44	-	
BY012		Поречье	53, 57.5	24, 09.5		56			45	5 (29-48)	
A	EBAZHC	18	53, 57.5	24, 09.5	200-225	2	19.2	2.1	40	1	
в	EBAZHC	18и	53, 57.5	24, 09.5	175-220	10	27.6	2.1	47	1	
C	EBAZHC	18и	53, 57.5	24, 09.5	270-280	3	18.0	2.5	45	1	
BY013		Привалка	53, 57.2	23, 50.4		21			55	3 (51-55)	
Α	EBAFHB	1	53, 57.2	23, 50.4	90-130	5	27.0	1.9	51	1	
B	EBAFHB	1	53, 57.2	23, 50.4	200-300	3	30.4	1.8	55	1	
BY014		Привалка	53, 57.0	23, 54.7		56			49	3 (49-55)	
A	EBAZHC	5	53, 57.0	23, 54,7	100-125	6	18.4	3.0	55	1	
B	EBAZHC	5	53, 57.0	23, 54.7	215-260	9	18.2	2.7	49	1	
BY015		Поречье	53, 56.7	24, 08.0		63			48	5 (27-50)	
A	EBAZHC	17	53, 56.7	24, 08.0	350-400	2	14.8	3.4	50	1	
В	EBAZHC	17	53, 56.7	24, 08.0	400-450	2	14.6	3.3	48	1	
BY016		Привалка	53, 55.7	23, 56.6		28	400.00	4.7-6.0	45	3 (39-62)	
A	EBAZHC	9	53, 55.7	23, 56.6	90-130	5	34.5	1.8	62	1	
B	EBAZHC	9	53, 55.7	23, 56.6	230-260	4	15.5	2.5	39	1	
BY017	EBABHC	Поречье 1	53, 55	24, 11	225-240	2020	15.1	3.25	49	grog pri la gro	
BA018		Поречье	53, 54.5	24, 09.1		99			46	6 (29-46)	
A	EBABHC	12	53, 54.5	24, 09.1	355-435	17	13.0	3.4	44	1	
B	EBABHC	12	53, 54.5	24, 09.1	435-465	1	14.0	3,3	46	1	
BA018	TITLATING	Поречье	53, 54.4	24, 07.9	120 012	66	0.000		39	3 (38-42)	
A	EBABHC	14	55, 54.4	24, 07.9	150-215	14	20.0	2.1	42	1	
B	EBABHC	14	53, 54.4	24,07.9	300-330	7	15.0	2.5	38	1	

Новые и исправленные определения плотности теплового потока

Продолжение таблицы

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			Коорд	инаты		Кол-во	Граниент			Изучено		
Ase Response Construction N = 1 (pract, sum) N	10	Код	C	Широта	Лошота	Интервал	отсчетов	темпера-	Теплопро-	Тепловой	интервалов	8
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	<u>JN0</u>	качества	Скважина	N	E	глуонны,	темпера-	туры,	Водность,	MBT/M ²	и диапазон	Ссылка*
				(град.	мин)		туры	мК/м	DUMK		потока	
A EBAFHB 4 33, 525 23, 495 233-270 8 20.5 1.9 39 1 B EBAFHB 4 53, 525 23, 495 345-800 86 22.0 2.3 59 1 B FDAFHB 3 53, 51.1 23, 52.1 14 -43 5(31-54) B EBAFHB 3 33, 51.1 23, 52.1 100-150 3 14.6 2.1 31 1 B EBAFHB 3 53, 51.1 23, 52.1 230-00 4 25 17 43 1 BY022 EBABHB 15 53, 44.6 23, 48.2 165-195 20.0 2.1 42 1 B EBAAHB 15 53, 44.2 24.7.0 759 2.0 2.1 42 1 B EBAAHB 1 53, 41.9 2.3, 47.0 175-245 15 2.0 2.1 42 1 B EBAAHBB 1	BY020	1	Привалка	53, 52.5	23, 49,5	I	127			53	5 (39-70)	
B EBAFHB 4 53, 52 23, 49, 5 345-380 8 22.0 2.3 59 1 C EBAFHB 3 53, 52, 52, 34, 53 345-380 8 22.0 2.3 59 1 B EBAFHB 3 53, 51, 12 23, 521 100-150 3 14.6 2.1 11 1 B EBAFHB 3 53, 51, 12 23, 521 203-300 4 255 1.7 43 1 B Tpanuneru 53, 446 23, 482 156-195 4 29.3 1.8 53 1 B EBABHB 15 53, 442 21.442 54 - 44 3(42-46) B EBAAHBB 1 53, 412 23, 47.0 759 48 3(42-46) A EBAAHBB 1 53, 419 23, 47.0 799 48 3(42-46) A EBAAHBB 1 53, 418 26, 550 640-20 21	A	EBAFHB	4	53, 52.5	23, 49.5	235-270	8	20.5	1.9	39	1	
C EBAFHB 4 53, 51.1 23, 52.1 14 43 5 (3.1-54) A EBAFHB 3 53, 51.1 23, 52.1 100-150 3 14.6 2.1 31 1 BY022 EBABFHB 3 53, 51.1 23, 52.1 230-300 4 25.5 1.7 43 1 BY022 EBABFHB 5 53, 41.6 23, 48.2 210-215 4 20.3 1.8 53 44 2.3 42 1.4 43 (42-46) B EBABHB 15 53, 41.6 23, 46.4 138-175 9 2.0 2.1 42 1 B EBABHB 1 53, 34.19 23, 46.4 138-175 9 2.0 2.1 45 1 BY024 EBAZHB 1 53, 41.9 23, 46.4 138-175 9 2.0 2.1 45 1 BY025 Tpoumo 53, 41.8 26, 550 64.070 4 8.7 </td <td>в</td> <td>EBAFHB</td> <td>4</td> <td>53, 52.5</td> <td>23, 49.5</td> <td>345-380</td> <td>8</td> <td>22.0</td> <td>2.3</td> <td>59</td> <td>1</td> <td></td>	в	EBAFHB	4	53, 52.5	23, 49.5	345-380	8	22.0	2.3	59	1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C	EBAFHB	4	53, 52.5	23, 49.5	380-405	6	16.5	3.2	53	1	
A EBAFHB 3 53, 51.1 23, 52.1 239-00 4 25.5 1.7 43 1 BY022 EBABHC Formura Son 53, 44.6 23, 48.2 230-450 41 13.8 33 45 1 BY022 Ipanzuew 53, 44.6 23, 48.2 216-255 4 29.3 1.8 53 1.4 69.3 1.1 BEBABHB 15 53, 44.6 23, 48.2 215-255 5 20.0 2.1 42 1 1.3 3.42 23.464 1.5 55.46 21.0 44.6 1 1.3 3.42 23.464 1.5 22.0 2.1 42 44.6 1 BY025 Tpomo 53, 41.9 23.47.0 175-245 15 22.0 2.1 45 1 BY026 Croofmu 53, 41.9 23.47.0 175-245 15 22.0 2.1 45 1 BY026 Croofmu 53, 41.8 26, 55.0 640-70 4 6.5 4.2 27 1 B EBAZHB 1	BY021		Привалка	53, 51.1	23, 52,1		14			43	5 (31-54)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A	EBAFHB	3	53, 51.1	23, 52.1	100-150	3	14.6	2.1	31	1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	B	EBAFHB	3	53, 51.1	23, 52.1	239-300	4	25.5	1.7	45	1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BY022	EBABHC	Бершты зоц	53, 50.9	24, 10.3	250-450	41	15.8	3,3	45	2 (49 52)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A A	FBARHR	15	53 44 6	23, 48.2	165-195	4	29.3	18	53	1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	В	EBABHB	15	53, 44.6	23, 48.2	215-245	5	26.0	1.9	49	1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BY024		Балесольное	53, 43.2	23, 46.4		54	75,210,00		44	3 (42-46)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A	EBABHB	1	53, 43.2	23, 46.4	135-175	9	20.0	2.1	42	1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	В	EBABHB	1	53, 43.2	23, 46.4	285-295	3	19.0	2.4	46	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BY025		Гродно	53, 41.9	23, 47.0		59			48	3 (45-48)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A	EBAZHB	1	53, 41.9	23, 47.0	175-245	15	22.0	2.1	45	1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	B	EBAZHB	1	53, 41.9	23, 47.0	280-295	4	21.0	2.3	48	1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	BY026	1715 A STETTS	Столбцы	53, 41.8	26, 55.0	200 200	47	07	0.5	27	5 (22-27)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A	EBAZHB	490	53, 41.8	26, 55.0	260-320	4	8.7	2.5	22	1	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	BV027	EDALID	Столбны	53,41.6	26, 53.0	040-070	70	0.5	4.2	27	6 (23-27)	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A	EBAZHB	516	53, 41.6	26, 54.8	480 - 520	5	78	3.5	27	1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	В	EBAZHB	516	53, 41.6	26, 54,8	570-630	7	8.0	3.4	27	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	BY028		Околово	53, 38.8	26, 44.4		105			30	5 (23-30)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Α	EBABHB	5p	53, 38.8	26, 44.4	320-430	22	8.0	3.5	28	1	
BY029 OROLORODO 53, 38.6 26, 44.8 43 28 4 (22-32) A EBABHB 8p 53, 38.6 26, 44.8 300-390 7 8.0 3.5 28 1 B BABHB 8p 53, 38.5 26, 44.8 300-390 7 8.0 3.5 28 1 B BABHB 9p 53, 38.5 26, 44.5 300-390 7 8.0 3.5 20 1 B BBABHB 9p 53, 38.5 26, 44.5 300-515 7 8.0 3.6 29 1 B BBABHB 10p 53, 38.9 26, 44.5 320-470 16 8.5 3.5 30 1 B BBABHB 10p 53, 37.2 26, 41.5 320-470 16 8.5 3.5 30 1 B EBAZHB 306 53, 37.2 26, 41.5 350-522 12 6.9 3.8 26 1 BY033	В	EBABHB	5p	53, 38.8	26, 44.4	450-670	35	8.6	3.5	30	1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	BY029		Околово	53, 38.6	26, 44.8		43			28	4 (22-32)	
В ЕВАВНВ % 55, 38.6 26, 44.8 330-390 7 8.0 3.5 28 1 ВY030 Околово 53, 38.5 26, 45.3 63 29 3 (20-29) A ЕВАВНВ 9p 53, 38.5 26, 45.3 165-190 6 8.0 2.5 20 1 B ЕВАВНВ 9p 53, 38.5 26, 44.5 3285-315 7 8.0 3.6 29 1 BY031 Околово 53, 38.9 26, 44.5 320-470 16 8.5 3.5 30 1 B ЕВАВНВ 10p 53, 38.9 26, 44.5 320-470 16 8.5 3.5 30 1 B ЕВАИВ 306 53, 37.2 26, 41.5 320-260 4 8.3 3.0 25 1 B ЕВАИВ 306 53, 37.2 26, 41.5 350-522 12 6.9 3.8 26 1 B ЕВАИВ	A	EBABHB	8p	53, 38.6	26, 44.8	210-280	8	11.0	2.0	22	1	
BY030 Околово 53, 38.5 26, 45.3 65.3 2.9 3 (20-29) A EBABHB 9p 53, 38.5 26, 45.3 265-190 6 8.0 2.5 20 1 B BEBABHB 9p 53, 38.5 26, 44.5 325-315 7 8.0 3.6 29 1 B BBABHB 10p 53, 38.9 26, 44.5 320-470 16 8.5 3.5 30 1 B EBABHB 10p 53, 38.9 26, 44.5 320-470 16 8.5 3.5 30 1 B EBADHB 10p 53, 38.9 26, 44.5 320-470 4 9.3 3.3 1 1 B EBAZHB 306 53, 37.2 26, 41.5 320-260 4 8.3 3.0 25 1 B EBAZHB 306 53, 37.2 26, 41.5 350-522 12 6.9 3.8 26 1 B	B	EBABHB	8p	53, 38.6	26, 44.8	330-390	7	8.0	3.5	28	2 (20, 20)	
A EBABHB $9p$ 53,38.5 26,45.3 $103-190$ 0 8.0 2.5 20 1 B EBABHB $9p$ 53,38.5 $26,44.5$ $285-315$ 7 8.0 3.6 29 1 A EBABHB $10p$ $53,38.9$ $26,44.5$ $320-470$ 16 8.5 3.5 30 1 B EBABHB $10p$ $53,38.9$ $26,44.5$ $320-470$ 16 8.5 3.5 30 1 B EBABHB $10p$ $53,38.9$ $26,44.5$ $320-470$ 46 8.5 3.5 30 1 B EBAZHB 306 $53,37.2$ $26,41.5$ $320-260$ 4 8.3 3.0 25 1 B EBAZHB 306 $53,37.2$ $26,41.5$ $350-522$ 12 6.9 3.8 26 1 B EBAZHB 10 $53,36.5$ $23,50.3$ $105-195$ 18.0 2.2 40 1 100	B Y U S U	EDADID	Околово	23, 38.2 52, 28.5	26, 45.3	165 100	63	8 A	2.5	29	3 (20-29)	
В налати в страна $25, 35.5$ $26, 44.5$ 250 $25, 50$ $25, 50$ $25, 50$ $25, 50$ $25, 50$ $25, 50$ $25, 50$ $25, 50$ $25, 50$ $25, 50$ $25, 50$ $25, 50$ $25, 50$ $25, 50$ $25, 50$ $25, 50$ 10	B	EDADID	Sp 9p	53 38 5	26, 45, 5	285_315	7	8.0	3.6	20	1	
A ЕВАВНВ 10p 53, 38.9 26, 44.5 320-470 16 8.5 3.5 30 1 B ЕВАВНВ 10p 53, 38.9 26, 44.5 470-500 4 9.3 3.3 31 1 BY032 Шашки 53, 37.2 26, 41.5 245 45 26 5 (19-26) A EBAZHB 306 53, 37.2 26, 41.5 230-260 4 8.3 3.0 25 1 B EBAZHB 306 53, 37.2 26, 41.5 350-522 12 6.9 3.8 26 1 BY033 Гродно 53, 36.5 23, 50.3 105-195 19 18.0 2.2 40 1 B EBAZHB 10 53, 36.5 26, 50.3 215-270 12 19.5 2.1 41 1 BY034 PyztbMa 53, 36.5 26, 24.5 270-320 6 9.3 2.8 26 1 B EBAZHB	BY031	LUADING	Околово	53 38.9	26, 44.5	205-515	53	0.0	5.0	31	5 (22-31)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A	EBABHB	10p	53, 38,9	26, 44.5	320-470	16	8.5	3.5	30	1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	в	EBABHB	IOp	53, 38.9	26, 44.5	470-500	4	9.3	3.3	31	1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	BY032		Шашки	53, 37.2	26, 41.5		45			26	5 (19-26)	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A	EBAZHB	306	53, 37.2	26, 41.5	230-260	4	8.3	3.0	25	1	
ВY033 Гродно 53, 36.5 23, 50.3 56 41 3 (40-42) A EBAZHB 10 53, 36.5 23, 50.3 105-195 19 18.0 2.2 40 1 B EBAZHB 10 53, 36.5 23, 50.3 215-270 12 19.5 2.1 41 1 BY034 PygbMa 53, 36.5 26, 24.5 50 26 4 (21-26) A EBAZHB 25 $\#$ 53, 36.5 26, 24.5 270-320 6 9.3 2.8 26 1 B EBAZHB 25 $\#$ 53, 36.5 26, 24.2 33 25 3 (25-26) A EBAZHB 24 $\#$ 53, 36.3 26, 24.2 120-180 7 12.3 2.0 25 1 B EBAZHB 24 $\#$ 53, 36.3 26, 28.7 31 28 3 (23-28) A EBAZHB 26n 53, 36.3 26, 28.7 31 28 3 (23-28) A EBAZHB 26n 53, 36.3 26, 28.7 70-320 6 8.2 <td>B</td> <td>EBAZHB</td> <td>306</td> <td>53, 37.2</td> <td>26, 41.5</td> <td>350-522</td> <td>12</td> <td>6.9</td> <td>3.8</td> <td>26</td> <td>1</td> <td></td>	B	EBAZHB	306	53, 37.2	26, 41.5	350-522	12	6.9	3.8	26	1	
A EBAZHB 10 53, 36.5 23, 50.3 $105-195$ 19 18.0 2.2 40 1 B EBAZHB 10 53, 36.5 $23, 50.3$ $215-270$ 12 19.5 2.1 41 1 BY034 PyztbMa 53, 36.5 $26, 24.5$ 50 26 4 ($21-26$) A EBAZHB 25π $53, 36.5$ $26, 24.5$ $320-500$ 19 7.6 3.4 26 1 B EBAZHB 25π $53, 36.5$ $26, 24.2$ 33 25 3 ($25-26$) B EBAZHB 24π $53, 36.3$ $26, 24.2$ $210-180$ 7 12.3 2.0 25 1 B EBAZHB 24π $53, 36.3$ $26, 24.2$ $210-320$ 12 7.1 3.5 25 1 B EBAZHB 24π $53, 36.3$ $26, 28.7$ 310 28 3 ($23-28$) 1 B EBAZHB 26π $53, 36.3$ $26, 28.7$ $270-320$ 6	BY033	Tarra anti- 1 a company and an	Гродно	53, 36.5	23, 50.3		56	Laboration of the		41	3 (40-42)	
В ЕВАДНВ 10 53, 36.5 25, 50.3 215–270 12 19.5 2.1 41 1 В Y034 Рудьма 53, 36.5 26, 24.5 50 26 4 (21–26) A EBAZHB 25ж 53, 36.5 26, 24.5 270–320 6 9.3 2.8 26 1 B EBAZHB 25ж 53, 36.5 26, 24.5 320–500 19 7.6 3.4 26 1 B EBAZHB 25ж 53, 36.3 26, 24.2 33 25 3 (25–26) A EBAZHB 24ж 53, 36.3 26, 24.2 210–180 7 12.3 2.0 25 1 B EBAZHB 24ж 53, 36.3 26, 28.7 210–320 12 7.1 3.5 25 1 BY036 Рудьма 53, 36.3 26, 28.7 270–320 6 8.2 3.4 28 1 BY037 Циловичи 53, 46.7 23, 53.2 <td>A</td> <td>EBAZHB</td> <td>10</td> <td>53, 36,5</td> <td>23, 50.3</td> <td>105-195</td> <td>19</td> <td>18.0</td> <td>2.2</td> <td>40</td> <td>1</td> <td></td>	A	EBAZHB	10	53, 36,5	23, 50.3	105-195	19	18.0	2.2	40	1	
B 1034 Рудьми 53, 36.5 26, 24.5 50 26 4 (21-26) A EBAZHB 25ж 53, 36.5 26, 24.5 270-320 6 9.3 2.8 26 1 B EBAZHB 25ж 53, 36.5 26, 24.5 320-500 19 7.6 3.4 26 1 BY035 Рудьми 53, 36.3 26, 24.2 33 25 3 (25-26) A EBAZHB 24ж 53, 36.3 26, 24.2 120-180 7 12.3 2.0 25 1 B EBAZHB 24ж 53, 36.3 26, 24.2 210-320 12 7.1 3.5 25 1 BY036 Рудьми 53, 36.3 26, 28.7 31 28 3 (23-28) A EBAZHB 26m 53, 36.3 26, 28.7 270-320 6 8.2 3.4 28 1 BY037 Цидовичи 53, 46.7 23, 53.2 56 45 3 (43-51) A EBAZHB 6 53, 46.7 23, 53.2 265-29 7	B	EBAZHB	10	53, 30.5	23, 50.3	215-270	12	19.5	2.1	41	1 (21, 26)	
В ЕВАДНВ 25ж 53, 36.5 26, 24.5 320-500 19 7.6 3.4 26 1 B EBAZHB 25w 53, 36.5 26, 24.5 320-500 19 7.6 3.4 26 1 B Y035 PygbMa 53, 36.3 26, 24.2 33 25 3 (25-26) A EBAZHB 24w 53, 36.3 26, 24.2 120-180 7 12.3 2.0 25 1 B EBAZHB 24w 53, 36.3 26, 24.2 210-320 12 7.1 3.5 25 1 B Y036 PygbMa 53, 36.3 26, 28.7 31 28 3 (23-28) A EBAZHB 26n 53, 36.3 26, 28.7 270-320 6 8.2 3.4 28 1 B Y037 Цидовичи 53, 46.7 23, 53.2 56 45 3 (43-51) A EBAZHB 6 53, 46.7 23, 53.2 265-29 7 16.5 2.6 43 1 B EBAZHB 6 53, 34.4 23, 54.2 100-135 8 13.5 2.3 <td>D 1034</td> <td>EDAZID</td> <td>Рудьма 25-и</td> <td>53, 30.5 53, 36, 5</td> <td>26, 24.5</td> <td>270 320</td> <td>30 6</td> <td>03</td> <td>28</td> <td>20</td> <td>4 (21-20)</td> <td></td>	D 1034	EDAZID	Рудьма 25-и	53, 30.5 53, 36, 5	26, 24.5	270 320	30 6	03	28	20	4 (21-20)	
В ИЗАТИВ 25ж 55, 50.5 20, 24.5 20, 24.5 33 20 14 20 1 BY035 Рудьма 53, 36.3 26, 24.2 33 25 3 (25-26) A EBAZHB 24ж 53, 36.3 26, 24.2 120-180 7 12.3 2.0 25 1 B EBAZHB 24ж 53, 36.3 26, 24.2 210-320 12 7.1 3.5 25 1 B EBAZHB 24ж 53, 36.3 26, 28.7 31 28 3 (23-28) A EBAZHB 26n 53, 36.3 26, 28.7 270-320 6 8.2 3.4 28 1 BY037 Цидовичи 53, 46.7 23, 53.2 95-175 17 24.1 2.0 48 1 B EBAZHB 6 53, 46.7 23, 53.2 95-175 17 24.1 2.0 48 1 B EBAZHB 6 53, 46.7 23, 53.2	B	FRAZHR	25%	53, 36,5	26, 24.5	320-500	19	7.6	3.4	26	1	
A EBAZHB 24ж 53, 36.3 26, 24.2 120-180 7 12.3 2.0 25 1 B EBAZHB 24ж 53, 36.3 26, 24.2 210-320 12 7.1 3.5 25 1 BY036 PygbMa 53, 36.3 26, 28.7 31 28 3 (23-28) A EBAZHB 26π 53, 36.3 26, 28.7 130-180 6 11.4 2.0 23 1 B EBAZHB 26π 53, 36.3 26, 28.7 270-320 6 8.2 3.4 28 1 BY037 Цидовичи 53, 46.7 23, 53.2 56 45 3 (43-51) A EBAZHB 6 53, 46.7 23, 53.2 95-175 17 24.1 2.0 48 1 B EBAZHB 6 53, 46.7 23, 53.2 265-29 7 16.5 2.6 43 1 BY038 Копаники 53, 34.4 23, 54.2 100-135 8 13.5 2.3 31 1 B <td< td=""><td>BY035</td><td>LIMALIU</td><td>Рульма</td><td>53, 36,3</td><td>26, 24,2</td><td>520 500</td><td>33</td><td>7.05</td><td>5.4</td><td>25</td><td>3 (25-26)</td><td></td></td<>	BY035	LIMALIU	Рульма	53, 36,3	26, 24,2	520 500	33	7.05	5.4	25	3 (25-26)	
В ЕВАZНВ 24ж 53, 36.3 26, 24.2 210-320 12 7.1 3.5 25 1 ВУ036 Рудьма 53, 36.3 26, 28.7 31 28 3 (23-28) A ЕВАДНВ 261 53, 36.3 26, 28.7 130-180 6 11.4 2.0 23 1 B ЕВАДНВ 261 53, 36.3 26, 28.7 270-320 6 8.2 3.4 28 1 B ЕВАДНВ 261 53, 36.3 26, 28.7 270-320 6 8.2 3.4 28 1 BY037 Цидовичи 53, 46.7 23, 53.2 56 45 3 (43-51) A ЕВАДНВ 6 53, 46.7 23, 53.2 265-29 7 16.5 2.6 43 1 B ЕВАДНВ 6 53, 34.4 23, 54.2 100-135 8 13.5 2.3 31 1 B ЕВАДНВ 26 53, 34.4 23	A	EBAZHB	24ж	53, 36.3	26, 24.2	120-180	7	12.3	2.0	25	1	
ВY036 Рудьма 53, 36.3 26, 28.7 31 28 3 (23-28) A EBAZHB 26n 53, 36.3 26, 28.7 130-180 6 11.4 2.0 23 1 B EBAZHB 26n 53, 36.3 26, 28.7 270-320 6 8.2 3.4 28 1 BY037 Цидовичи 53, 46.7 23, 53.2 56 45 3 (43-51) A EBAZHB 6 53, 46.7 23, 53.2 56 45 3 (43-51) A EBAZHB 6 53, 46.7 23, 53.2 265-29 7 16.5 2.6 43 1 B EBAZHB 6 53, 34.4 23, 54.2 44 43 3 (31-44) A EBAZHB 26 53, 34.4 23, 54.2 100-135 8 13.5 2.3 31 1 B EBAZHB 26 53, 34.4 23, 54.2 205-245 9 19.4 2.2 43	В	EBAZHB	24ж	53, 36.3	26, 24.2	210-320	12	7.1	3.5	25	1	
A EBAZHB 26n 53, 36.3 26, 28.7 130–180 6 11.4 2.0 23 1 B EBAZHB 26n 53, 36.3 26, 28.7 270–320 6 8.2 3.4 28 1 BY037 Циловичи 53, 46.7 23, 53.2 56 45 3 (43–51) A EBAZHB 6 53, 46.7 23, 53.2 95–175 17 24.1 2.0 48 1 B EBAZHB 6 53, 46.7 23, 53.2 265–29 7 16.5 2.6 43 1 B EBAZHB 6 53, 34.4 23, 54.2 100–135 8 13.5 2.3 31 1 B EBAZHB 26 53, 34.4 23, 54.2 100–135 8 13.5 2.3 31 1 B EBAZHB 26 53, 34.4 23, 54.2 205–245 9 19.4 2.2 43 1 B EBAZHB 26 53, 33.5 23, 41.8 280–291 2 19.1 2.3	BY036		Рудьма	53, 36.3	26, 28.7		31			28	3 (23-28)	
В ЕВАZНВ 26п 53, 36.3 26, 28.7 270-320 6 8.2 3.4 28 1 В Y037 Цидовичи 53, 46.7 23, 53.2 56 45 3 (43-51) A ЕВАZНВ 6 53, 46.7 23, 53.2 56 45 3 (43-51) A ЕВАZНВ 6 53, 46.7 23, 53.2 265-29 7 16.5 2.6 43 1 B ЕВАZНВ 6 53, 34.4 23, 54.2 265-29 7 16.5 2.6 43 1 BY038 Копаники 53, 34.4 23, 54.2 100-135 8 13.5 2.3 31 1 A ЕВАZНВ 26 53, 34.4 23, 54.2 205-245 9 19.4 2.2 43 1 B ЕВАZНВ 26 53, 33.5 23, 41.8 280-291 2 19.1 2.3 44	А	EBAZHB	2611	53, 36.3	26, 28.7	130 - 180	6	11.4	2.0	.23	1	
В Y037 Цидовичи 53, 46.7 23, 53.2 56 45 3 (43-51) A EBAZHB 6 53, 46.7 23, 53.2 95-175 17 24.1 2.0 48 1 B EBAZHB 6 53, 46.7 23, 53.2 265-29 7 16.5 2.6 43 1 BY038 Копаники 53, 34.4 23, 54.2 44 43 3 (31-44) A EBAZHB 26 53, 34.4 23, 54.2 100-135 8 13.5 2.3 31 1 B EBAZHB 26 53, 34.4 23, 54.2 205-245 9 19.4 2.2 43 1 B EBAZHB 26 53, 33.5 23, 41.8 280-291 2 19.1 2.3 44	B	EBAZHB	26п	53, 36.3	26, 28.7	270-320	6	8.2	3.4	28	1	
A EBAZHB 6 53, 46.7 23, 53.2 95-175 17 24.1 2.0 48 1 B EBAZHB 6 53, 46.7 23, 53.2 265-29 7 16.5 2.6 43 1 BY038 Копаники 53, 34.4 23, 54.2 44 43 3 (31-44) A EBAZHB 26 53, 34.4 23, 54.2 100-135 8 13.5 2.3 31 1 B EBAZHB 26 53, 34.4 23, 54.2 205-245 9 19.4 2.2 43 1 B EBAZHB 26 53, 33.5 23, 41.8 280-291 2 19.1 2.3 44	BY037	CIDA STOR	Цидовичи	53, 46.7	23, 53.2	0.5	56		2.0	45	3 (43-51)	
В ЕБАДНБ 0 55, 40.7 25, 53.2 205-29 7 10.5 2.6 43 1 ВУ038 Копаники 53, 34.4 23, 54.2 44 43 3 (31-44) A EBAZHB 26 53, 34.4 23, 54.2 100-135 8 13.5 2.3 31 1 B EBAZHB 26 53, 34.4 23, 54.2 205-245 9 19.4 2.2 43 1 B EBAZHB 26 53, 33.5 23, 41.8 280-291 2 19.1 2.3 44	A	EBAZHB	6	53, 46.7	23, 53.2	95-175	17	24.1	2.0	48	1	
A EBAZHB 26 53, 34.4 23, 54.2 100–135 8 13.5 2.3 31 1 B EBAZHB 26 53, 34.4 23, 54.2 100–135 8 13.5 2.3 31 1 B EBAZHB 26 53, 34.4 23, 54.2 205–245 9 19.4 2.2 43 1 BY039 EBAZHB 50, 33.5 23, 41.8 280–291 2 19.1 2.3 44	BV029	EBAZHB	0 Konamus	53, 40.7	23, 53.2	205-29	1	10.5	2,6	45	2 (21 11)	
В ЕВАZHВ 26 53, 34.4 23, 54.2 100-133 6 13.3 2.3 51 1 В ЕВАZHВ 26 53, 34.4 23, 54.2 205-245 9 19.4 2.2 43 1 В Y039 ЕВАZHВ Брюзги 53, 33.5 23, 41.8 280-291 2 19.1 2.3 44	B 1038	EBA7UD	Опаники	53 34.4	23, 54.2	100_125	44	125	2.3	43	3 (31-44)	
ВУ039 ЕВАДНВ Брюзги 53, 33.5 23, 41.8 280-291 2 19.1 2.3 44	R	EBAZHB	26	53 34.4	23, 54.2	205-245	0	19.4	2.3	43	1	
	BY039	EBAZHB	Брюзги	53, 33.5	23, 41.8	280-291	2	19.1	2.3	44	1	

Продолжение таблицы

	1	r	Record		1			1		Изучено	
	122		Коорд	инаты	Интервал	Кол-во	Градиент	Теплопро-	Тепловой	интервалов	
No	Код	Скважина	Широта,	Долгота,	слубины.	отсчетов	темпера-	водность.	HOTOK.	и лиапазон	Ссылка*
	качества	100-000 AV 2000AV	N	E	м	темпера-	туры,	Вт/мК	мВт/м ²	изменения	STATE AND CONTROLS
			(град.,	мин)		туры	MK/M			потока	
BY040)	Шнипки	53, 31.4	24.36.6		39			45	5 (32-53)	
А	EBAZHB	8п	53, 31.4	24, 36.6	215-235	5	9.0	3.5	32	1	
В	EBAZHB	8n	53, 31.4	24, 36,6	245-65	5	19.0	2.8	53	1	
C	EBAZHB	811	53, 31.4	24, 36.6	305-325	5	12.0	3.5	42	1	
BY041		Столбцы	53, 30.8	26, 47.6		41			23	4 (17-26)	
A	EBAZHB	11	53, 30.8	26, 47.6	400-560	9	6.0	3.7	22	1	
В	EBAZHB	11	53, 30.8	26, 47.6	560-720	10	6.5	3.6	23	1	
BY042		Столбцы	53, 30.0	26, 43.4		144			16	9 (13-25)	
A	EBAZHB	07	53, 30.0	26, 43.4	400-565	34	6.0	2.5	15	1	
в	EBAZHB	07	53, 30.0	26, 43.4	565-590	6	6.4	2.8	18	1	
C	EBAZHB	07	53, 30.0	26, 43.4	655-755	21	6.5	2.5	16	1	
BY043		Турец	53, 30.2	26, 18.9		80			23	3 (20-27)	
Α	EBAZHB	15оп	53, 30.2	26, 18.9	120-180	13	7.8	2.5	20	1	
в	EBAZHB	15on	53, 30.2	26, 18.9	195-400	42	6.8	3.4	23	1	
BY044		Пуховщина	53, 29.8	27,00.0		75			22	3 (20-22)	
Α	EBABHB	49п	53, 29.8	27,00.0	235-285	11	5,4	3.7	20	Dental Provide Contractor	
в	EBABHB	49п	53, 29.8	27,00.0	290-10	25	6.0	3.6	22		
BY045	5	Пуховщина	53, 29.6	26, 59.9		35			18	7 (17-23)	
A	EBABHB	513	53, 29.6	26, 59.9	400-480	5	5.0	3.5	18	1	
В	EBABHB	513	53, 29,6	26, 59.9	480-520	3	6.0	3.0	18	1	
C	EBABHB	513	53, 29.6	26, 59,9	520-530	2	7.0	2.8	20	1	
BY046	ý	Пуховщина	53, 29.3	27,00.0		36			20	4 (17-20)	
А	EBABHB	507	53, 29,3	27,00.0	280-300	3	4.8	3.9	19	1	
В	EBABHB	507	53, 29,3	27,00.0	300-340	3	5.4	3.7	20	1	
BY047	ECABHB	Олельск	53, 23,5	23, 44.8		9			42	3 (33-42)	
A	ECABHB	20п	53, 23,5	23, 44.8	140-178	3	17.0	2.1	35	- X-1	5
В	ECABHB	20п	53, 23,5	23, 44.8	160-178	3	20.0	2.1	42		
BY048	}	Мосты	53, 20.7	24, 38.7		44			48	3 (48-50)	
А	EBAFHB	108	53, 20.7	24, 38.7	196-225	7	13.4	3.6	48	1	
В	EBABHB	108	53, 20,7	24, 38.7	196-261	13	13.0	3.5	48	1	2
BY049)	Озераны	53, 15.2	29, 56.0		84			40	7 (27-52)	
А	EBAFHB	. 3	53, 15,2	29, 56.0	110-400	59	14.0		36	1	2
в	EBAFHB	3	53, 15,2	29, 56.0	190-235	10	21.5	2.1	45	1	
C	EBAFHB	3	53, 15,2	29, 56.0	255-395	9	9.6	4.2	40	1	
BY050)	Несвиж	53, 15,1	26, 42.5		34			21	2(20-21)	
Α	EBAFHB	22	53, 15,1	26, 42.5	140-210	8	4.3	4.7	20	1	
В	EBAFHB	22	53, 15,1	26, 42.5	230-330	12	4.6	4.5	21	1	
BY051		Несвиж	53, 13.9	26, 41.6		40			22	4 (15-24)	
А	EBAFHB	14	53, 13.9	26, 41.6	140 - 180	5	6.7	2.4	16	1	
в	EBAFHB	14	53, 13.9	26, 41.6	290-390	11	4.5	4.8	22	1	
BY052	2	Несвиж	53, 13.6	26, 41.5		36			23	2 (23-25)	
А	EBAFHB	12	53, 13.6	26, 41.5	230-270	3	5.5	4.5	25	1	
В	EBAFHB	12	53, 13.6	26, 41.5	290-440	16	4.7	4.8	23	1	
BY053		Несвиж	53, 13.5	26, 44.8		36			23	4 (18-29)	
A	EBAFHB	18	53, 13.5	26, 44.8	110-140	4	9.0	2.0	18	1	
В	EBAFHB	18	53, 13.5	26, 44.8	300-350	6	5.0	4.5	23	1	
BY054		Несвиж	53, 13.4	26, 41.0		71			23	2 (22-24)	
Α	EBAFHB	13	53, 13,4	26, 41.0	140-225	18	5.5	4.4	24	1	
В	EBAFHB	13	53, 13,4	26, 41.0	230-360	27	4.5	4.8	22	1	
BY055	5	Щара	53, 12.0	26, 10.0	And an	43			19	4 (18-20)	
A	EBAFHB	225	53, 12.0	26, 10.0	129-150	8	10.0	2.0	20	1	
В	EBAFHB	225	53, 12.0	26, 10.0	156-195	12	7.4	2.5	19	1	
BY056)	Бобруйск	53, 10.2	29, 17.4		138	- 18 TO		41	12 (24-43)	
A	EBAFHB	691	53, 10.2	29, 17.4	310-365	12	9.5	4.3	41	1	
В	EBAFHB	691	53, 10.2	29, 17,4	605-640	8	12.9	3.2	41	Ĩ	
С	EBAFHB	691	53, 10.2	29, 17.4	640-695	12	13.6	3.1	42	1	
BY057	EBAFHB	Бобруйск	53, 07.9	28, 48.1		129			27	8 (20-27)	

Продолжение таблицы

					-						
			Коорд	инаты		Kon-po	Engineer			Изучено	
	Kon		1.1	1 77	Интервал	NOJ-BO	тампара	Теплопро-	Тепловой	интервалов	e. 19
N₂	Код	Скважина	Широга,	Долгота,	глубины,	отсчетов	темпера-	водность,	поток,	и диапазон	Ссылка*
	качества		N	E	М	темпера-	Typsi,	BT/MK	мBт/м ²	изменения	
			(град.	, мин)	1974.1	туры	MIX/M		101-000-00	потока	
A	EBAFHB	726	53, 07.9	28, 48.1	520-540	5	8.5	3.2	27	1	
в	EBAFHB	726	53,07.9	28, 48.1	555-585	7	8.3	3.2	27	1	
C	EBAFHB	726	53.07.9	28, 48, 1	625-645	5	9.5	2.8	27	1	
BV058	1	Глуша	53 04 5	28 52 4		95			27	5 (16-27)	
	FRATHR	5546/2	53 04.5	28 52 4	280_315	8	97	28	27	1	
D	EDATID	5546/2	52 04 5	20, 52.4	215 400	36	0.2	2.0	27	1	
DVOSO	EDATID	0040/2	53,04.5	20, 52.4	313-490	10	9.5	2.9	4/	4 (21 445	
B 1055	and a second	Свислочь	55, 01.8	24,07.2	0.00 0.00	12	12.2		44	4 (21-44)	
A	ECAPHB	105	53, 01.8	24, 07.2	250-275	2	13.2	2.7	30	1	
B	ECAFHB	105	53, 01.8	24, 07.2	283-275	2	17.5	2.5	44	1	
BY060)	Свислочь	53, 01.7	24, 03.1		58			42	5 (26-42)	
A	ECAFHB	105/4	53, 01.7	24, 03.1	250-270	5	12.5	2.7	34	1	
B	ECAFHB	105/4	53, 01.7	24, 03.1	270-305	8	17.0	2.5	42	1	
BY061		Камен. Мост	52, 52.5	24, 26.4		36			45	7 (29-45)	
A	ECABHB	28	52, 52.5	24, 26.4	152-220	15	15.0	2.0	31	1	1
в	ECABHB	28	52, 52, 5	24, 26,4	250-260	3	14.2	2.3	33	1	
C	FCABHB	28	52 52 5	24 26 4	260-270	3	18.0	2.5	45	1	
BV062	1.07 1.57 11.5	Morumuni	52, 46.0	25 25 5	341/757 AP 7.17	21	4010		20	4 (27.24)	
D1004	e Trico e dot nos	TAILUI HEIMITTER	52,40.9	23, 33.5		31	100.00		32	+ (27-54)	
A	ECABHB	5	52, 46.9	25, 35.5	200-270	8	10.0	3.0	30	1	
B	ECABHB	5	52, 46.9	25, 35.5	290-330	5	8.3	3.8	32	1	
BY063	i.	Трухановичи	52, 43.5	24, 29.0		20			38	4 (34–38)	
A	ECAFHB	2	52, 43.5	24, 29.0	170-190	3	17.5	2.0	35	1	
B	ECAFHB	2	52, 43.5	24, 29.0	190-220	3	15.0	2.5	38	1	
C	ECAFHB	2	52, 43.5	24, 29.0	110-220	18	16.0	2.25	35	1	6
BY064		Towner	52 37 7	26 44 9	1652 281	35		2012201	28	6(21-29)	
D1004	EDA711D	220	53 37 7	26, 44.0	200 500	11	8.4	2.4	20	0 (21-25)	
D	EDAZID	239	52, 37.7	26, 44.9	500-500	11	0.4	2.4	29	1	
DYOCC	EBAZHB	239	52, 37.7	20, 44.9	200-700	0	8.4	3.4	28	(07.01)	
B 1005		Дрогичин	52, 30.8	25, 42.5	NAMES OF STREET	14			30	0(27-31)	
A	ECABHB	5	52, 30.8	25, 42.3	110-230	13	11	2.8	30	1	4
в	ECABHB	5	52, 30.8	25, 42.3	100-130	4	14.2	2.1	30	1	
C	ECABHB	5	52, 30,8	25, 42.3	130-170	5	11,0	2,8	31	1	
BY066	5	Брилево	52, 12.4	24, 24.1		49			42	2 (36-57)	
A	EBABHB	3	52, 12.4	24, 24.1	95-185	19	20	1.8	36	1	
в	EBABHB	3	52, 12.4	24, 24.1	175-185	3	32	1.8	57	1	
BY067	EBABHB	Брилево	52, 10.5	24, 24,4	105-150	10	20	1.8	36		
BY068	1	Чернавчины	52, 12, 2	23, 47.2		21	Autority -		44	3 (39-56)	
Δ	FRARHB	750	52 12 2	23 47 2	80-95	4	29.5	19	56	1	
B	EBABHB	750	52 12 2	23, 47.2	95-105	3	20.5	1.0	30	1	
BV060	EDADID	Enuropo A	52,12.2	24.25.6	100 155	12	20.2	1.9	17		
DV070	EDADIID	Брилево 4	52, 12.2	24, 25.0	125 150	12	17.6	1.0	- 47		
BI070	EBABHB	Брилево /	52, 10.4	24, 25.5	125-150	0	17.0	1.8	32	0.202.025	
BA0/1		1 ирск	52, 09.2	24, 32.4	20.02.	4	22-23-22	2.2	26	2 (25-27)	
A	EBABHB	6	52, 09.2	24, 32.4	50-75	2	14.0	1.9	27	4	
B	EBABHB	6	52, 09.2	24, 32.4	75-123	2	12.7	2.0	-25	1	
BY072	1	Брест	52, 07.1	23, 41.5		30			55	2(40-55)	
A	EBAZZC	753	52, 07.1	23, 41.5	105-135	7	20.9	1.9	40	1	
B	EBAZZC	753	52,07.1	23, 41.5	140-150	3	28.9	1.9	55	1	
BY073		Бульково	52,06.4	23, 56.5		42			45	6 (34-45)	
Α	ECAFHB	19	52,06.4	23, 56,5	195-205	3	18.7	2.0	37	1	
B	ECAFHB	19	52 06 4	23 56 5	215-220	2	18.2	2.5	45	i	
c	ECAFHR	19	52 064	23 56 5	54-181	26	18	2.0	37	1	1
BV074	asera 110	Evan pones	52,00.4	03 56 5	54 101	40	10	14 . M	28	7 (10 25)	<u>*</u>
D10/4	ECAPTE	Бульково	52,00.3	23, 30.3	180 205	47	10.7	0.7	20	1 (19-35)	
A	ECAPHB	12	52,00.3	23, 36.5	180-205	0	10.5	2.7	28	4	
в	ECAFHB	12	52, 06.3	23, 56.5	205-225	5	10.9	2.5	27	1	20
C	ECAFHB	12	52, 06.3	23, 56.5	54-181	27	17	2.0	33	1	1
BY075	5 EBAZHC	Алеся	51, 59.4	25, 41.8		95			30	8 (23-40)	
A	EBAZHC	1	51, 59.4	25, 41.8	260-310	11	11.7	2.6	30	1	
В	EBAZHC	1	51, 59.4	25, 41.8	310-465	32	10.7	2.7	29	1	
BY076	j.	Берестье	51, 48.9	23, 42.5		60			45	7 (25-45)	
-											

	0	11. C	114			1.			U	кончание	таолицы
			Координаты		17	Кол-во	Градиент	T		Изучено	
No	Код качества	Скважина	Широта, N	Долгота, Е	глубины,	отсчетов темпера-	темпера- туры,	водность,	поток,	и диапазон	Ссылка*
			(град., мин)		111	туры	MK/M	Louiselle	31.51/31	потока	
A	EBAZHB	4	51, 48.9	23, 42.5	270-310	5	22.3	2.0	45	Ĩ	
В	EBAZHB	4	51, 48.9	23, 42.5	420-450	4	28.1	1.6	45	1	
BY077		Малорита	51, 46.4	24,00.4		11			46	4 (30-46)	
Α	EEAZZC	la	51, 46.4	24,00.4	140 - 180	3	19.3	1.9	37	1	
В	EEAZZC	la	51, 46.4	24,00.4	180-199	3	18.6	2.5	46	1	
BY078	EBAZHC	Малорита 1г	51, 44.7	24, 01.4	100-199	8	17.7	2.15	38	1	
BY079		Домачево	51, 44.6	23, 36.9		54			44	7 (31-45)	
A	EBAZHB	1	51, 44.6	23, 36.9	380-400	3	16.6	2.7	45	1	
В	EBAZHB	1	51, 44.6	23, 36.9	411-421	2	26	1.7	44	1	
BY080	EBAFHB	Жабинка 7	52, 12.1	24, 02.8	80-189	13	21.6	2.0	43	1	

Примечание. * 1 – Жук М.С., Зуй В.И., Козел В.П. Тепловой поток Подлясско-Брестской впадины и сопредельных структур // Докл. АН БССР. 1989. Т. 33, № 3. С. 257–260; 2 – Зуй В.И., Жук М.С., Козел В.П. Каталог теплового потока Белоруссии // Сейсмологические и геотермические исследования на западе СССР. Мн., 1993. С. 220–229; 3 – Урбан Г.И., Цыбуля Л.А. Тепловой поток Балтийской синеклизы. М., 2004; 4 – Цыбуля Л.А., Жук М.С., Козел В.П. Тепловой поток Полесской седловины и Микашевичско-Житковичского выступа // Белоруссия: проблемы региональной геологии. Мн.: БелНИГРИ, 1986. С. 167–172; 5 – Цыбуля Л.А., Жук М.С. Тепловой поток Белорусской антеклизы // Докл. АН БССР. 1985. Т. 29, № 8. С. 731–734; 6 – Цыбуля Л.А., Урбан Г.И., Козел В.П. Тепловой поток в Подлясско-Брестской впадине и его геологическая интерпретация // Геологический журнал. 1988. № 5. С. 72–76.

1985), литовских и белорусских (Sliaupa, Rasteniene, 2000; Урбан, Цыбуля, 2004) исследователей в приграничных районах.

На основе имеющегося каталога (Зуй и др., 1993), работ (Урбан Беляшов, 2003; Zhuk et al., 2004; Зуй, 2005) и приведенных в таблице данных построена карта плотности теплового потока (рис. 3). Его распределение в значительной мере дифференцировано в пределах Беларуси. На фоне низких значений (менее 30-40 мВт/м²) выделяются положительные аномалии (более 50-70 мВт/м²) в Припятском прогибе и Подлясско-Брестской впадине. Повышенные значения (40-50 мВт/м²) наблюдаются не только в пределах этих структур, но и в виде локальных аномалий в Белорусской антеклизе, южной части Оршанской впадины, на Северо-Припятском плече, в Жлобинской седловине и на западном склоне Воронежской антеклизы.

Значения теплового потока менее 30 мВт/м² формируют цепочку локальных аномалий, частично расположенных вдоль Волыно-Оршанско-Крестцовского палеопрогиба (Палеотектоника Белоруссии, 1983), однако, как правило, имеющих меридиональное простирание. Наибольшая из них по площади прослеживается от северной части Полесской седловины и Микашевичско-Житковичского выступа до северной части Белорусской антеклизы в направлении городов Ганцевичи - Несвиж. На широте Минска в направлении Бобруйска от нее ответвляется полоса, охватывающая Червенский структурный залив Оршанской впадины и Осиповичское поднятие. Низкие значения теплового потока (20-25 мВт/м²) наблюдаются в пределах Бобовнянского выступа фундамента Белорусской антеклизы.

Вторая меридионально ориентированная аномалия низкого теплового потока выделена по 10 скважинам в западной части Оршанской впадины. Она прослеживается между городами Могилев и Невель. Еще одна узкая цепочка локальных аномалий – между городами Чериков и Орша. В северо-восточной части Белорусской антеклизы по 7 скважинам выделена аномалия низкого теплового потока изометричной формы несколько западнее линии Лепель - Полоцк, большая ось которой также направлена на север. Аналогичная аномалия изображена возле рамки карты, выделенная по 5 скважинам на территории Латвийской седловины за пределами Беларуси. Наконец, в крайней юго-восточной части Подлясско-Брестской впадины южнее линии Дивин – Пинск по 3 скважинам выделено северное окончание аномалии теплового потока менее 30 мВт/м², имеющей меридиональное простирание. На территории Украины она подтверждается данными по 6 скважинам.

Вдоль северо-западного и юго-восточного краев Волыно-Оршанско-Крестцовского палеопрогиба в его периферийных зонах отмечаются небольшие локальные аномалии плотности теплового потока (до 50–60 мВт/м²). Масштаб карты (см. рис. 3) затрудняет их изображение. Они обычно приурочены к раннепротерозойским гранитоидным массивам (Житковичский горст, Мостовский, Выгодский, Марцинконисский и другие массивы) в центральной части Белорусской антеклизы (Цыбуля, 1984; Жук, 1989₉).

Наиболее высокий тепловой поток в пределах региона наблюдается в северо-восточной и восточной частях Припятского прогиба. Его значение достигает 60–70 мВт/м² (Zhuk et al., 2004), а в

Рис. 3. Карта плотности теплового потока Беларуси, мВт/м². 3 – изолинии плотности теплового потока. Остальные условные обозначения см. на рис. 2.

пределах Березинской, Шатилковской, Первомайской и Озерщинской структур оно превышает 75 мВт/м². Аналогичные высокие значения отмечаются и в пределах Красносельской, Речицкой, Барсуковской структур. В южной зоне прогиба плотность ТП изменяется от 25 до 60 мВт/м². Здесь отмечается цепочка локальных аномалий, оконтуренных изолинией 50 мВт/м², вытянутых вдоль Южно-Припятского краевого разлома.

В Подлясско-Брестской впадине значение потока изменяется от 35 до 60 мВт/м² (Цыбуля и др., 1988; Жук и др., 1989). В направлении периферии впадины происходит его убывание до 30-40 мВт/м². Изолиния 40 мВт/м² объединяет положительные аномалии во впадине и центральной части Белорусской антеклизы в окрестностях Гродно. Ее северное продолжение на территории Литвы изучено недостаточно. Возможно, оно соединяется с аномалией высокого теплового потока в западной Литве и Калининградской области (Hurtig, 1991/1992). В пределах западного склона Воронежской антеклизы плотность потока превышает 40 мВт/м².

Вопреки ожидавшемуся направлению обширных аномалий температуры и плотности теплового потока вдоль оси Волыно-Оршанско-Крестцовского палеопрогиба, они распадаются на несколько меньших по площади аномалий, ориентированных в меридиональном направлении, что может свидетельствовать, в частности, о повышенной проницаемости земной коры вдоль Одесско-Беломорской зоны разломов. В пределах Беларуси здесь выделен Чашникский разлом фундамента и Хойникский разлом в платформенном чехле в Припятском прогибе.

Повышенные значения температуры и плотности теплового потока выходят за северный краевой разлом Припятского прогиба и прослеживаются в меридиональном направлении через Северо-Припятскую ступень, восточную часть Бобруйского погребенного выступа и далее в западной части Оршанской впадины и на восточ-

ном склоне Белорусской антеклизы вплоть до широты г. Невель (Россия). В южной части этой аномалии значения плотности теплового потока выше, чем в северной. По мере приближения к северному борту Припятского прогиба происходит увеличение плотности потока до значений более 40-50 мВт/м².

МАССИВЫ ГРАНИТОИДОВ И БЛАСТОМИЛОНИТОВ И НАБЛЮДАЕМЫЙ тепловой поток

В строении кристаллического фундамента Беларуси выделяются массивы гранитоидов разного возраста и состава, пояса бластомилонитов, гнейсы и другие породы. Имеет смысл сравнить площадное распространение массивов кислых пород, в частности поясов гранитоидов и бластомилонитов, вытянутых вдоль глубинных разломов, выявленных в кристаллическом фундаменте, с распределением плотности теплового потока.

Как известно, в массивах кислых пород, по сравнению с толщами пород основного состава, концентрация долгоживущих изотопов - урана, тория и калия, вносящих основной вклад в значение радиогенной теплогенерации, значительно выше. Для выяснения связи структуры теплового потока с распространением массивов гранитоидов в пределах Беларуси составлена карта (рис. 4), на которой гранитоиды показаны без разделения их на отдельные типы и комплексы. Данные по распространению гранитоидных массивов и бластомилонитов заимствованы из карты кристаллического фундамента (Карта ..., 2002).

Следует отметить, что в пределах Оршанской впадины кристаллический фундамент изучен лишь немногими скважинами. Выделение массивов гранитоидов выполнено по магнитным аномалиям. Основные полосы бластомилонитов выявлены в пределах Белорусско-Прибалтийского гранулитового пояса в западной и северо-западной частях Беларуси. В восточной части изучаемой территории выявлен лишь один массив бластомилонитов, приуроченный к Чашникскому разлому, а в северной части региона - полоса между Браславом и Освеей с включением цепочки небольших массивов гранитоидов.

В пределах Подлясско-Брестской впадины и прилегающей части Белорусской антеклизы между Малоритой и Новоельней - зона с плотностью теплового потока более 40 мВт/м² удовлетворительно согласуется с направлением поясов бластомилонитов и немногочисленных массивов гранитоидов, далее она окаймляет Мостовский и Выгодский массивы гранитоидов и трассируется на территорию Литвы. В приграничной же с Польшей полосе Подлясско-Брестской впадины, оконтуренной изолинией 50 мВт/м², такое соответствие хотя и имеет место, однако эта изолиния сечет полосы бластомилонитов. Видимо, здесь сказывается влияние переноса

тепла фильтрующимися подземными водами из прилегающих частей Белорусской антеклизы и Луковско-Ратновского горста во впадину. Подтверждением тому является развитая здесь зона пресных вод до глубины 1000-1100 м в районе Бреста в полосе, прилегающей к белорусскопольской границе (Станкевич, 2004).

В районе озера Нарочь в скважинах Нарочь 101пс, 102пс, пробуренных в пределах полосы бластомилонитов, отмечено несколько повышенное значение потока (до 50 мВт/м²) по сравнению со скважинами, пробуренными западнее в санаториях «Белая Русь» и «Строитель» (41-43 мВт/м²). Видимо, это свидетельство некоторой тектонотермальной активизации, имевшей место вдоль глубинного разлома, пересекающего акваторию озера Нарочь.

В центральной части Беларуси не наблюдается четко выраженной корреляции между распространением массивов гранитоидов и тепловым потоком. Видимо, мощность выделенных здесь гранитоидных массивов незначительна и они не могут оказать заметного влияния на его увеличение. Так, в районе Ганцевичей, Несвижа, Минска, Воложина плотность теплового потока, как правило, не превышает 30 мВт/м². Аналогичная ситуация имеет место и на территории между Вилейкой и Вильнюсом.

Массив бластомилонитов с цепочкой гранитоидов в северной части Беларуси между Браславом и Освеей находит отражение в несколько повышенном тепловом потоке в скв. Шкяуне, расположенной практически на белорусско-латвийской границе со стороны Латвии. Однако в геотермическом плане эта территория слабо изучена по обе стороны границы.

Гранитоидный массив, расположенный между Светлогорском и Бобруйском, отчетливо отражается в повышении плотности теплового потока до значений более 40 мВт/м², которые прослеживаются на север до широты г. Борисов и далее до российско-белорусской границы на траверсе г. Невель. Однако на участке от Борисова до границы с Россией плотность теплового потока снижается до 30-35 мВт/м². Пространственно этот участок относительно повышенного потока включает и выделенный здесь массив бластомилонитов. В остальной части Оршанской впадины практически не отмечается связи плотности теплового потока с изображенными на карте массивами гранитоидов. Следует еще раз подчеркнуть, что изучена Оршанская впадина как по строению фундамента, так и по тепловому потоку значительно хуже, чем соседние структуры.

Наконец, отметим, что наблюдается удовлетворительная корреляция между повышенным тепловым потоком (более 40 мВт/м²) и положением массивов гранитоидов в пределах западного склона Воронежской антеклизы (восточнее линии Гомель - Чериков), заходящего на территорию

FEADI3IKA

Рис. 4. Сопоставление схемы распределения плотности теплового потока, мВт/м², с гранитоидными массивами (6) и поясами бластомилонитов (7) в пределах Беларуси; 8 – гнейсы; 9 – границы основных структур. Остальные условные обозначения см. на рис. 2.

Беларуси. В итоге можно отметить, что связь распространения массивов гранитоидов и бластомилонитов с наблюдаемой плотностью теплового потока неоднозначна. Там, где мощность гранитоидов выше, а их возраст моложе, наблюдается повышение плотности теплового потока за счет влияния повышенной радиогенной составляющей. В границах их маломощных толщ это влияние практически не ощущается.

ТЕПЛОВОЙ ПОТОК И РАДИОГЕННАЯ ТЕПЛОГЕНЕРАЦИЯ

Тепловой поток, наблюдаемый у земной поверхности, формируется из его части, поступающей в подошву земной коры из верхней мантии (редуцированный тепловой поток), и составляющей, генерируемой в земной коре за счет радиогенной теплогенерации, которая возникает при распаде в основном радиоактивных изотопов – урана, тория, радия и калия. Вклад последней в тепловой поток для большинства блоков земной коры в областях стационарного теплового режима может достигать 40-70 % (Смыслов и др., 1979). Наоборот, сильно эродированные блоки коры с малой мощностью гранитогнейсового слоя, характеризуются низкими и весьма низкими значениями коровой составляющей потока.

В пределах изучаемого региона были проведены исследования по радиогенной теплогенерации пород кристаллического фундамента, вскрытых бурением (Жук, 1989.; Sliaupa, Rasteniene, 2000; Лосева и др., 2005), включая и отдельные скважины, где имеются данные по тепловому потоку. На основе статистически обработанных радиологических и геофизических данных по Белорусской антеклизе установлено, что тепловыделение А (мкВт/м³) кристаллического фундамента связано с гамма-активностью г (пА/кг) соотношением А= 1,17 г + 0,16 (Жук, 1989.). Эта зависимость получена при анализе гаммаактивности по более чем 380 скважинам антеклизы, вскрывшим кристаллический фундамент. Радиогенная теплогенерация имеет прямую связь

с плотностью теплового потока. Большим значениям A соответствует больший тепловой поток и наоборот.

Низким значениям потока (менее 20– 30 мВт/м²) в блоках земной коры с повышенной основностью пород (Барановичский, Клецкий блоки, Околовская грабен-синклиналь) (Веришко, Шитц, 1981) соответствует низкая теплогенерация. В них имели место процессы базификации и эрозии земной коры. Повышенные значения потока (более 40–60 мВт/м²) характерны для областей преимущественного распространения амфиболит-гнейсового комплекса пород в центральной и юго-восточной частях Беларуси, а также в гранитоидных массивах Марцинконисский, Мостовский, Выгодский и других. В зонах бластомилонитов также наблюдаются в целом повышенные значения теплогенерации.

Для Белорусской антеклизы величина наблюдаемого теплового потока связана с радиогенной теплогенерацией А зависимостью ТП = 20+8,7·А (Жук, 1989₁₋₂), а вклад радиогенной составляющей в наблюдаемый поток для различных блоков земной коры антеклизы изменяется от 30 до 50 %. Аномалии низкого ТП в пределах Волыно-Оршанско-Крестцовского палеопрогиба (Тектоника Белоруссии, 1976) могут быть в значительной степени связаны с эрозией верхней части кристаллического фундамента в период образования локальных сводных поднятий (Цыбуля, 1984).

Мнения относительно контрастности распределения теплового потока в Припятском прогибе высказывались неоднократно (Богомолов и др., 1972; Атрощенко, 1975; Цыбуля, Анпилогов, 1977; Цыбуля и др., 1984; Пархомов, 1985; Цыбуля, Левашкевич, 1990). Природу тепловой аномалии в северо-восточной части прогиба исследователи объясняют разными причинами: восходящим движением подземных вод, рефракцией теплового потока в солянокупольных структурах, неотектоническими движениями и разломной тектоникой. По результатам моделирования (Пархомов, 1985; Козел, 1989), положительная аномалия теплового потока в северо-восточной части Припятского прогиба имеет глубинное происхождение и генетически связана с Северо-Припятским краевым разломом, который сохраняет активность до настоящего времени (Москвич и др., 1989). Несомненно влияние и радиогенной теплогенерации (Цыбуля, Анпилогов, 1977), однако определить ее количественный вклад трудно, поскольку имеются лишь одиночные данные о содержании изотопов урана, тория и калия.

Повышенная плотность потока в Житковичском горсте хорошо согласуется с радиогенной теплогенерацией в гранитоидных породах фундамента – до 3,7 мкВт/м³. Ей соответствует повышенный ТП (42–60 мВт/м²), в Микашевичском горсте – 0,5–1,2 мкВт/м³ и 21–24 мВт/м² соответственно. В пределах Подлясско-Брестской впадины радиогенная теплогенерация в приповерхностных частях фундамента изменяется от 1,2 до 4 мкВт/м³ (гранитоиды, плагиогнейсы, гранодиориты). Ей соответствует положительная аномалия теплового потока более 50 мВт/м² (Цыбуля и др., 1988; Жук и др., 1989) по направлению к Луковско-Ратновскому горсту значения потока снижаются до 40 мВт/м² (Бурьянов и др., 1985), что можно объяснить как наличием мантийного абиссолита, частично внедренного в земную кору с малой теплогенерацией, так и разгрузкой подземных вод с горста в центральную часть впадины.

ВЛИЯНИЕ ФИЛЬТРАЦИИ ПОДЗЕМНЫХ ВОД

Из практики известно, что нисходящая фильтрация подземных вод в районе скважины отражается в виде вогнутой формы термограммы, тогда как восходящая фильтрация регистрируется в виде выпуклой кривой (рис. 5). Направление инфильтрации показано стрелкой вниз, а восходящей фильтрации – стрелкой вверх. Термограмма, представленная прямой линией, соответствует однородной толще отложений в случае отсутствия вертикальной фильтрации (V = 0). На рис. 5 показан идеальный

Рис. 5. Вид термограмм при наличии инфильтрации (1), восходящей фильтрации (3) и при отсутствии фильтрации (2) для однородной толщи отложений. Вектор V изображает направление и скорость фильтрации флюида.

случай, когда скважина вскрыла однородную толщу пород с неизменным коэффициентом теплопроводности, а ствол скважины находился в тепловом равновесии с массивом горных пород перед началом геотермических исследований.

Одним и тем же глубинам D1 и D2 соответствуют температуры T1 и T2 на вогнутой термограмме (наличие инфильтрации) и ТЗ и Т4 – на выпуклой термограмме (случай восходящей фильтрации). Очевидно, что и значения температуры и геотермического градиента для одинакового интервала D1–D2 будут разными. Более низкие значения разности температуры на границах интервала и геотермического градиента в верхней части геологического разреза будут соответствовать вогнутой термограмме, а более высокие – выпуклой кривой.

В нижней же части разреза одним и тем же глубинам D3 и D4 соответствуют температуры T5 и T6 на вогнутой термограмме (наличие инфильтрации) и T7 и T8 – на выпуклой термограмме (случай восходящей фильтрации). Очевидно, что и значения разности температуры и геотермического градиента в интервале D3–D4 разные. Однако теперь более низкие значения геотермического градиента будут соответствовать выпуклой термограмме, а более высокие – вогнутой кривой.

Влияние подземных вод наиболее существенно сказывается лишь в верхних частях платформенного чехла в зоне интенсивного водообмена, а также в наиболее приподнятой трещиноватой части кристаллического фундамента, где выявлены пресные воды. В случае преобладания инфильтрации интервальные значения потока (см. табл.) увеличиваются с глубиной. В зонах же разгрузки подземных вод в долины рек плотность теплового потока убывает с глубиной.

Основные аномалии низких значений температуры (см. рис. 2) и плотности теплового потока (см. рис. 3) соответствуют Белорусской антеклизе и Оршанской впадине. В последней подавляющее большинство изученных скважин завершено в зоне распространения пресных вод. На обеих структурах верхняя часть платформенного чехла промыта инфильтрационными водами. В центральной части Белорусской антеклизы они выявлены и на трещиноватых участках кристаллического фундамента (Богомолов, Шпаков, 1974). Приведенные данные могут быть одним из объяснений существования аномалий низких значений температуры и наблюдаемой плотности теплового потока в пределах Белорусской антеклизы и Оршанской впадины, наряду с низкой радиогенной теплогенерацией.

Результаты изучения распределения температуры на глубине 100 м и плотности теплового потока в пределах Беларуси показывают, что геотермическое поле тесно связано как с особенностями глубинного строения и эволюции блоков земной коры, так и с фильтрацией подземных вод. Значительную роль при этом играет распределение радиогенной теплогенерации в приповерхностных частях фундамента с направлением и интенсивностью циркуляции флюидов прежде всего в верхней части платформенного чехла, рефракцией потока в солянокупольных структурах и другими факторами.

Авторы благодарят профессора Г.И. Каратаева за критические замечания, высказанные при чтении рукописи.

Работа выполнена частично в рамках гранта БРФФИ № X06Б-002/2.

СПИСОК ЛИТЕРАТУРЫ

АТРОЩЕНКО П.П. Геотермические условия северной части Припятской впадины. Мн., 1975. 104 с.

БОГОМОЛОВ Г.В., ЛЮБИМОВА Е.А., ЦЫБУЛЯ Л.А., КУТАСОВ И.М., АТРОЩЕНКО П.П. Тепловой поток в Припятской впадине // Изв. АН БССР. Сер. физ.-мат. наук. 1970. № 2. С. 97–103.

БОГОМОЛОВ Г.В., ПРОТАСЕНЯ Д.Г. Белорусская ССР // Термальные воды СССР и вопросы их теплоэнергетического использования. М.: Изд-во АН СССР, 1963. С. 27-33.

БОГОМОЛОВ Г.В., ЦЫБУЛЯ Л.А., АТРОЩЕНКО П.П. Геотермическая зональность территории БССР. Мн., 1972. 216 с.

ЕОГОМОЛОВ Г.В., ШПАКОВ О.Н. Гидрогеология Белорусского кристаллического массива. Мн., 1974. 105 с. БОГОМОЛОВ Ю.Г. Данные о тепловом режиме земной коры юго-запада БССР // Докл. АН БССР. 1970. Т. XIV, № 1. С. 57-60.

БУРЬЯНОВ В.Б., ГОРДИЕНКО В.В., ЗАВГОРОДНЯЯ О.В. и др. Геофизическая модель тектоносферы Украины. Киев, 1985. 212 с.

ВЕРИПІКО Ф.С., ШИТЦ В.А. Глубинное строение Центрально-Белорусского массива // Тектоника и палеогеография запада Восточно-Европейской платформы. Мн., 1981. С. 100–109.

ГОРДИЕНКО В.В., ЗАВГОРОДНЯЯ О.В. Определения теплового потока на Восточно-Европейской платформе // Докл. АН УССР. Сер. Б. Геол., геохим. и биол. науки. 1985. № 2. С. 10–13.

ЖУК М.С. Геотермическая характеристика земной коры Белорусской антеклизы и смежных областей // Геотермия и ее применение в региональных и поисково-разведочных исследованиях. Свердловск, 1989, С. 55.

ЖУК М.С. Тепловой поток и радиогенная теплогенерация пород фундамента Белорусской антеклизы // Докл. АН БССР. 1989. Т. 33, № 1. С. 71–74.

ЖУК М.С., ЗУЙ В.И., КОЗЕЛ В.П. Тепловой поток Подлясско-Брестской впадины и сопредельных структур // Докл. АН БССР. 1989. Т. 33, № 3. С. 257-260.
 ЖУК М.С., КАПОРА М.С. Гидрогеотермические условия осадочного чехла восточного склона Белорусской

ЖУК М.С., КАПОРА М.С. Гидрогеотермические условия осадочного чехла восточного склона Белорусской антеклизы // Сейсмологические и геотермические исследования на западе СССР. Мн., 1993. С. 165–177. ЖУК М.С., МАКАРЕНКО В.С., ЦАЛКО П.Б. Геотермические условия южной части Припятского прогиба

// Докл. АН Беларуси. 1993. Т. 37, № 4. С. 109–113. ЗУЙ В.И. Температура квазинейтрального слоя и геотермические аномалии Оршанской впадины // Літа-

сфера. 2004. № 1 (20). С. 156–159.

- ЗУЙ В. Тепловой поток и геотермические аномалии Оршанской впадины // Проблемы водных ресурсов, геотермии и геоэкологии: Матер. Междунар. науч. конф., посвященной 100-летию со дня рождения академика Г.В. Богомолова: В двух томах. 2005. Т. 1. С. 259-261.
- ЗУЙ В.И. Электромоделирование процессов теплового воздействия на нефтяной пласт. Мн.: Наука и техника, 1984. 144 с.
- ЗУЙ В.И., ВЕСЕЛКО А.В., КОЗЕЛ В.П., ПАРХОМОВ М.Д., ЖУК М.С. Тепловое поле // Глубинное строение и динамика земных недр территории Белоруссии / Под ред. Р.Г. Гарецкого, Ж.П. Хотько, Г.И. Каратаева и др. Мн., 1991. С. 91-118.
- ЗУЙ В.И., ЖУК М.С., КОЗЕЛ В.П. Каталог теплового потока Белоруссии // Сейсмологические и геотермические исследования на западе СССР. Мн., 1993. С. 220-229.
- ЗУЙ В.И., УРБАН Г.И., ВЕСЕЛКО А.В., ЖУК М.С. Геотермические исследования в Калининградской области и Литовской ССР // Сейсмологические и геотермические исследования в Белоруссии. Мн., 1985. С. 88-94. КАРТА крышталічнага фундамента // Нацыянальны атлас Беларусі. Мн., 2002. С. 41.
- КОЗЕЛ В.П. Численная модель геотермической аномалии Припятского прогиба // Актуальные проблемы геофизики. М., 1989. С. 50-59.
- ЛОСЕВА Е., ЗУЙ В., АКСАМЕНТОВА Н. Радиогенная теплогенерация пород главных структурных зон и интрузивных массивов кристаллического фундамента Беларуси // Проблемы водных ресурсов, геотермии и геоэкологии: Матер. Междунар. науч. конф., посвященной 100-летию со дня рождения академика Г.В. Богомо-лова. Минск, 1-3 июля 2005 г. Т. 1. Мн., 2005. С. 270-272.
- МАЙОРОВИЧ Я., ПЛЕВА С. Изучение теплового потока в Польше и решение тектонофизических задач // Тепловое поле Европы. М., 1982. С. 261-276.
- МОСКВИЧ В.А., ПАРХОМОВ М.Д., КОЗЕЛ В.П. Геотермическая аномалия зоны активного разлома // Активные разломы – методы их изучения, морфология, кинематика и геодинамическое значение. М.-Иркутск, 1989. C. 35.

ПАЛЕОТЕКТОНИКА Белоруссии. Мн.: Наука и техника, 1983. 184 с.

- ПАРХОМОВ М.Д. Тепловой режим Припятского прогиба // Сейсмические и геофизические исследования в Белоруссии. Мн., 1985. С. 124-130.
- ПРОТАСЕНЯ Д.Г. Некоторые закономерности геотермики глубоких частей Припятского прогиба // Докл. AH ECCP. 1962, T. 6, № 1. C. 49-62.
- ПРОТАСЕНЯ Д.Г. О некоторых вопросах гидро- и термодинамики Припятского грабена // Материалы конференции молодых ученых АН БССР. Мн., 1962, С. 193-199.

СМЫСЛОВ А.А., МОИСЕЕНКО У.И., ЧАДОВИЧ Г.З. Тепловой режим и радиоактивность Земли. Л., 1979. 191 с. СТАНКЕВИЧ Р.А. Артезианские воды Бреста и их использование. Мн., 2004. 184 с.

- ТЕКТОНИКА Белоруссии / Под ред. Р.Г. Гарецкого. Мн., 1976. 200 с.
- УРБАН Г.И., БЕЛЯШОВ А.В. Тепловой поток в районе Жлобинского и Уваровичского полей диатрем // Літа-сфера. 2003. № 2 (19). С. 95–102.
- УРБАН Г.И., ЦЫБУЛЯ Л.А. Тепловой поток Балтийской синеклизы. М.: ИФЗ РАН, 2004. 158 с.
- ХОДЫРЕВА Э.Я. Кондуктивные и конвективные тепловые потоки Припятского нефтегазоносного бассейна Экспресс-информация. Сер. Нефтегазовая геология и геофизика. Отечественный опыт. Вып. 7. М., 1987. C. 14-17.
- ЦЫБУЛЯ Л.А. Тепловой поток и геотермическое районирование западной части Восточно-Европейской платформы // Докл. АН БССР. 1984. Т. 28, № 2. С. 166-169.
- ЦЫБУЛЯ Л.А., АНПИЛОГОВ А.П. К вопросу неоднородности теплового поля Припятского прогиба // Докл. АН БССР. 1977. Т. 21, № 4. С. 339–341. ЦЫБУЛЯ Л.А., ЖУК М.С. Геотермическая характеристика осадочных отложений и тепловой поток в районе
- г. Минска // Докл. АН БССР. 1981. Т. 25, № 1. С. 66-68.
- ЦЫБУЛЯ Л.А., ЖУК М.С., КОЗЕЛ В.П. Тепловой поток Полесской седловины и Микашевичско-Житковичского выступа // Белоруссия: проблемы региональной геологии. Мн., 1986. С. 167-172.
- ЦЫБУЛЯ Л.А., ЖУК М.С. Тепловой поток Белорусской антеклизы // Докл. АН БССР. 1985. Т. 29, № 8. C. 731-734.
- ЦЫБУЛЯ Л.А., ЛЕВАШКЕВИЧ В.Г. Тепловой поток в Припятском прогибе и причины его неоднородности Геологический журнал. 1990. № 4. С. 19-26.
- ПЫБУЛЯ Л.А., ЛЮСОВА Л.Н., СМИРНОВА Е.В. Тепловой поток в Припятском прогибе и Балтийской синеклизе (Калининградская область) // Методика и результаты геолого-геофизических нефтепоисковых исследований в Припятском прогибе. Мн., 1984. С. 102–180. ЦЫБУЛЯ Л.А., ПАРХОМОВ М.Д., ЦАЛКО П.Б., ЖУК М.С., КОЗЕЛ В.П. Результаты геотермических
- исследований в скважине Осташковичи 123 Припятского прогиба // Сейсмологические и геотермические исследования в Белоруссии. Мн., 1985. С. 100-105. ЦЫБУЛЯ Л.А., УРБАН Г.И., КОЗЕЛ В.П. Тепловой поток в Подлясско-Брестской впадине и его геологи-
- ческая интерпретация // Геологический журнал. 1988. № 5. С. 72-76.
- ЦЫБУЛЯ Л.А., УРБАН Г.И. Тепловой поток в Волынско-Оршанском прогибе // Докл. АН БССР. 1984. Т. 28, № 9. С. 843-846.
- BOGOMOLOV G.V., BOGOMOLOV Yu.G., ZUI V.I., TSYBULYA L.A. Geothermal Investigations on the Territory of Byelorussia // Geothermics and Geothermal Energy / Eds. V. Cermak and R. Haenel. Stuttgart, 1982. P. 101-105.
- HURTIG E. (Editor-in-chief). Geothermal Atlas of Europe. Geographisch-Kartofraphische Anstalt Gotha. (Explanarory Note and 36 maps). 1991/1992.
- JESSOP A.M., HOBART M.A., SCLATER J.G. The World Heat Flow Data Collection 1975. Geothermal Service

FEADI3IKA

of Canada. Geothermal Series 5. Ottawa, 1976.

SAFANDA J., SZEWCZYK J., MAJOROWICZ J. Geothermal evidence of very low glacial temperatures on a rim of the Fennoscandian ice sheet // Geophysical Research Letters. 2004. Vol. 31. P. 1-4.

SLIAUPA S., RASTENIENE V. Heat flow and heat production in the crystalline basement of Lithuania // Geologija. 2000. № 31. S. 24–34.

ZHUK M.S., TSALKO P.B., ZUI V.I. Heat flow of the Pripyat Trough // Jiracфepa. 2004. № 1 (20). C. 122–130. ZUI V.I. Anomalies of the terrestrial temperature field of Belarus // Lithosphere. 2004. № 2 (21). P. 117–125.

Рецензент Г.И. Каратаев

Поступило 12.07.06

ЦЕПЛАВОЕ ПОЛЕ ГЕАЛАГІЧНЫХ СТРУКТУР БЕЛАРУСІ

У.І. Зуй, М.С. Жук

Артыкул прысвечаны вывучэнню цеплавога поля геалагічных структур Беларусі: Беларускай антэклізы, Падляска-Брәсцкай і Аршанскай упадзін, Прыпяцкага прагіну, беларускай часткі Лукаўска-Ратнаўскага горсту, Палескай, Латвійскай і Жлобінскай седлавін. Разгледжана размеркаванне тэмпературы на глыбіні 100 м. Выкананы новыя вызначэнні шчыльнасці цеплавога струменю на ўсіх структурах рэгіёну. У асобных выпадках перагледжаны надрукаваныя раней яго значэнні, ў якіх не ўлічвалася ўздзеянне прыпаверхневых фактараў на геатэрмічны градыент. Зменлівасць цеплавога струменю з глыбінёй адлюстравана яго некалькімі інтэрвальнымі значэннямі для большасці вывучаных свідравін. Разгледжана сувязь паміж распаўсюджваннем гранітоідаў і бластаміланітаў у верхняй частцы крышталічнага фундамента і назіраемай шчыльнасцю цеплавога струменю. Абмеркавана сувязь паміж радыёгеннай цеплагенерацыяй, узнікаючай пры распадзе доўгажывучых ізатопаў урану, торыю і калію, са шчыльнасцю цеплавога струменю. У межах распаўсюджвання гранітоідаў, а ў многіх выпадках і бластаміланітаў, назіраецца прамая сувязь паміж цеплагенерацыяй і цеплавым струменем. Вызначаны фактары, якія ўплываюць на назіраемую шчыльнасць цеплавога струменю ў верхніх інтэрвалах разрэзу платформавага чахла. Асноўнае значэнне тут мае фільтрацыя падземных вод, перш-наперш ў зоне актыўнага водаабмену.

GEOTHERMAL FIELD WITHIN GEOLOGICAL STRUCTURES OF BELARUS

V.I. Zui, M.S. Zhuk

The main features of the terrestrial temperature field within Belarus were revealed as a result of analysis of around 500 temperature-depth diagrams recorded in boreholes all over the whole region. The temperature distribution map at a depth of 100 m (was compiled). Numerous new temperature anomalies were outlined and described. Margins of some known anomalies were specified more precisely. New heat flow density (HFD) measurements were fulfilled for 80 boreholes including some of earlier published heat flow density values, which were recalculated and improved. Outside the Pripyat Trough, shallow boreholes prevail, their depths usually not exceeding 300-400 meters. It was observed that for many of them interval HFD values are dependent on the considered depth interval. In most cases HFD increases from shallow to deeper intervals. It is considered that the downward groundwater filtration is responsible for this effect. A revised heat flow density map reflects a contrast pattern of the heat flow distribution not only within such Paleozoic structures, as the Pripyat Trough and the Belarussian part of the Podlaska-Brest Depression, but also within the rest of Precambrian structures (Belarussian Anteclise, Orsha Depression, Polessian and Zhlobin saddles, western slope of the Voronezh Anteclise within the territory of Belarus). The more numerous anomalies of low temperature and heat flow are found in the East-Orsha, Central Belarussian regions and the eastern slope of the Belarussian Anteclise. High temperature and heat flow anomalies were outlined and described Pripyat Trough, Podlaska-Brest, Grodno, Lyakhovichi-Novoyelnya, Vileika-Naroch, Belynichi-Rechitsa.

A correlation between the area distribution of granitoid and blastomylonite belts in the crystalline basement and heat flow density pattern was discussed. It was shown that this correspondence exists in some of areas (mostly within the western part of the Belarussian Anteclise, at the same time it was not revealed in the Orsha Depression and the eastern part of the anteclise.

The direct correlation between the radiogenic heat production and the observed HFD was described. Within Vygodsk, Mosty, Martsinkonis granite massifs with increased heat production this factor results in HFD as high as $50-55 \text{ mW/m}^2$. Within deeply eroded crustal blocks of the Belarussian Anteclise HFD values are usually within $20-30 \text{ mW/m}^2$ only.

Salt tectonics developed within the Pripyat Trough results in a contrast distribution of temperature and heat flow fields in the vicinity of salt swells and domes. The observed heat flow values depend on the studied depth interval and geometry of salt bodies. High heat flow values correspond to the dome nuclei and cap rock deposits, where the density of concentrated heat flow is as high as $100-110 \text{ mW/m}^2$. The influence of hydrogeological conditions, salt tectonics and lithologic features of rocks comprising the platform cover create a complicated pattern of the heat flow distribution.